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We show that the transport and thermodynamic properties of a singly-connected disordered con-
ductor exhibit quantum Aharonov-Bohm oscillations as a function of the total magnetic flux through
the sample. The oscillations are associated with the interference contribution from a special class
of electron trajectories confined to the surface of the sample.
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Introduction–Quantum coherence of electron motion
dramatically affects low temperature phenomena in dis-
ordered conductors. Anderson localization [1] is the most
profound of them, but even in the metallic regime, where
quantum effects are relatively small, they give rise a
number of dramatic effects due to their extreme sensi-
tivity to magnetic field and to inelastic processes [2, 3].
Celebrated examples are universal conductance fluctu-
ations (UCF) [4, 5], magnetoresistance in weak mag-
netic fields [6], and Aharonov-Bohm (AB) oscillations [7]
in thin mesoscopic cylinders and rings [8, 9]. Here we
show that quantum interference corrections give rise to
a novel type of AB oscillations that exist in finite singly-
connected conductors. They originate from the boundary
of the sample and are associated with a special type of
diffusive trajectories that graze the boundary.

In the metallic regime quantum corrections may be un-
derstood semiclassically. One can start with the classical
motion of electrons with momentum p, where |p| ' pF
(pF is the Fermi momentum) along diffusive trajectories
(“paths”) consisting of segments of straight lines broken
by impurities, (see Fig. 1 a). The phase θl of the quantum
amplitude for the l-th path is

θl(B) =
pFLl
~

+
e

c~

∫
l

dr ·A. (1)

Here Ll is the path length and the second term is the
Aharonov-Bohm phase due to the magnetic field, B =
∇ × A. Observables may be expressed in terms of the
sum of quantum amplitudes taken over all classical paths
connecting two points (r1 and r2 in Fig. 1), i.e.,∣∣∣∣∣∑

l

√
Wle

iθl

∣∣∣∣∣
2

=
∑
l

Wl+2Re
∑
l 6=l′

√
WlWl′e

i(θl−θl′ ), (2)

where Wl is the classical probability of path l. The first
sum on the right hand side of Eq. (2) corresponds to the
classical probability of propagation from r1 to r2. The
second gives the quantum correction that arises from in-
terference of amplitudes of different trajectories, and is in
general random due to rapidly oscillating phase factors.

Consideration of leading quantum corrections amounts
to statistical analysis of these random terms. For ex-
ample the weak localization correction is determined by
its average whereas UCF are determined by its second
cumulant.
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FIG. 1. a) Diffusive paths contributing to the interference
corrections. b) Sketch of the directed area swept by a path.
The blue and red regions give opposite in sign contributions.
c) Typical path leading to the gaussian decay of the cooperon
in the bulk. d) Typical path near the surface. (e) Surface
paths leading to AB oscillations. Notice that the straight
segment structure of diffusive paths in a),b) is not shown in
panels c)-e).

One of the main objects governing the statistics of
quantum corrections [2] is the cooperon. It describes in-
terference of pairs of geometrically identical paths tra-
versed in opposite directions,

C(r1, r2;B) =
∑
l

Wle
i[θl(B)−θl(−B)]. (3)

In the absence of magnetic field the phase factors above
are equal to unity, and the cooperon is given by the prob-
ability of classical diffusion between points r1, r2. In a
finite magnetic field the phase factors become random
due to accumulation of Aharonov-Bohm flux through
oriented areas swept by diffusive paths (see Fig. 1 b).
It is well known [2] that this randomness suppresses
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the cooperon at distances larger than the magnetic
length, lB =

√
~c/eB, so that for an infinite system

C(r1, r2;B) ' exp
[
2ie/(~c)

∫
A · dr− αb(r1 − r2)2/l2B

]
,

where αb a is constant of order unity and the integral is
taken along the chord connecting r1 and r2.

As will be shown below, directed areas swept by elec-
tron trajectories near the boundary have smaller ran-
domness than those in the bulk. As a result, near
the boundary the cooperon has a very different coordi-
nate dependence from that in the bulk; C(r1, r2;B) '
exp

[∫
s

(2ie/(~c)A · dr− αs|dr|/lB)
]
. Here αs is a con-

stant of order unity, and the integration is taken along
the boundary. In contrast to the gaussian fall-off of the
bulk contribution with distance r12 ≡ |r1 − r2| the sur-
face contribution falls off exponentially and thus becomes
dominant at large distances. Another important distinc-
tion is that the Aharonov-Bohm phase of the surface
contribution is determined by the geometry of the the
sample boundary rather than the shortest line connect-
ing the end points. Furthermore, the requirement that
on completing the perimeter of the sample, see Fig. 1
e, the cooperon must remain unchanged means that the
surface contribution C(r, r;B) is, in fact, an oscillat-
ing function of the magnetic flux through the sample,
Φ, C(r, r;B) ' ... + exp (−αsp/lB) cos (2πΦ/Φ0), where
Φ0 = 2π~c/2e is the superconducting flux quantum and
p is the length of the perimeter (for a 3-dimensional sys-
tem p and Φ are respectively the perimeter of the ex-
tremal cross-section perpendicular to the magnetic field,
and the flux through it). This means that the quantum
interference corrections are expected to oscillate (rather
than simply decay) with the magnetic field even in singly-
connected geometries [10], in a way similar to the effects
in multiple connected geometries [7, 8, 11].

Qualitative discussion – To elucidate the difference be-
tween the surface and the bulk contributions to the inter-
ference corrections we now discuss the statistics of diffu-
sive trajectories in more detail. Let us label each diffusive
trajectory by r(τ), 0 ≤ τ ≤ t, where t is the duration of
the diffusive motion. Then summation over the paths l
can be re-written as

∑
l

Wl →
∫
dtP (t); P (t) '

∑
r(τ)

exp

(
−
∫ t
0
dτ ṙ2

4D

)
,

where D is the diffusion constant, and the summation
(path integration) is performed over all trajectories r(τ)
in which the particle travels from r1 to r2 in time t. In
this notation the bulk contribution to the cooperon (3)
acquires the form

C(r1, r2;B) = eiθ
AB
r1r2

∫
dtP (t)

〈
exp

(
2iS {r(t)}

l2B

)〉
, (4)

where the Aharonov-Bohm phase θABr1r2 = i2e
~c
∫ r2
r1
dr · A

is calculated along the straight line connecting points r1

and r2, S {r(t)} is the directed area of the surface con-
fined by the path r(t) and the straight line connecting
points r1, r2, see Fig. 1, and the averaging means

〈. . . 〉 =
1

P (t)

∑
r(τ)

. . . exp

(
− 1

4D

∫ t

0

dτ ṙ2
)
. (5)

Some conclusions about the statistical properties of
S can easily be drawn on symmetry and dimensional-
ity grounds. Consider for example a typical diffusive
path shown in Fig. 1 c. Its probability can be estimated
as exp

[
−(r212 + (∆y)2)/(4Dt)

]
while the directed area

swept by it is S ' 1/2|r12|∆y. Then, the averaged phase
factor is given by〈

exp

(
2iS

l2B

)〉
∝
∫ ∞
−∞

d∆y exp

(
ir12∆y

l2B

)
exp

(
− (∆y)2

4Dt

)
∝ exp

(
−Dtr212/l4B

)
(6)

(the prefactor is easily found from the lB → ∞ limit).
Substituting this estimate into Eq. (4), we obtain

C(r1, r2;B) '
∫
dt exp

[
−r212/(4Dt)

]
exp

(
−Dtr212/l4B

)
.

The exponent in the integrand has a minimum atDt ' l2B
and at |r12| � lB can be evaluated in the saddle point
approximation with the result that in the interior of the
system the cooperon decays rapidly at large distances,

|C(r1, r2;B)| ∝ exp
(
−r212/l2B

)
. (7)

This rapid spatial decay of the bulk contribution arises
from an unconstrained summation of a large number of
contributions in (6), which have random signs and nearly
cancel each other. The presence of a nearby boundary
imposes a sharp geometrical constraint on the allowed
paths, which enhances the sum of rapidly oscillating con-
tributions of different paths. For instance, consider the
same trajectory as in Fig. 1 c, but for both points r1 and
r2 near the boundary. For such trajectories the geometric
constraint imposed by the boundary amounts to confin-
ing the integration variable y to the interval y ∈ [0,∞)
resulting in a contribution of the form∣∣∣∣∫ ∞

0

dy exp

(
ir12∆y

l2B

)
exp

(
− (∆y)2

4Dt

)∣∣∣∣ ' l2b
|r12|
√
Dt

.

Although this contribution decays merely as a power
law at r12 � lB , there are other oscillatory con-
tributions, which together lead to an exponential de-
cay. Consider a trajectory having the form of the
“skipping orbit” shown on Fig. 1 d, which includes
n reflections from the boundary. Its probability is

exp
(
−r212/(4Dt)− n

∑n
j=1(∆yj)

2/(4Dt)
)

, while the di-

rected area swept by it is S ' 1/(2n)|r12|
∑n
j=1 ∆yj . The
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estimate (6), thus, immediately changes to〈
exp

(
2iS

l2B

)〉
∝

n∏
j=1

∞∫
0

d∆yj exp

(
ir12∆yj
nl2B

− n (∆yj)
2

4Dt

)
.

Estimating n from the requirement that the contribution
from both terms in the exponent be of the same order
for the relevant value of ∆yj , we find the optimal value
of n to be given by n3∗ ' (tDr212)/l4B . The final value of
the averaged phase factor becomes〈

exp

(
2iS

l2B

)〉
=
(
e−αs

)n∗
= exp

[
−αs

(
tDr212
l4B

)1/3
]
,

where αs is a coefficient of order unity and Reαs > 0.
Substituting this estimate into Eq. (4), we find

C(. . . ) '
∫
dt exp

[
−r212/(4Dt)

]
exp

[
−αs

(
tDr212/l

4
B

)1/3]
.

The exponent in the integrand has a minimum at Dt '
lBr12 and at |r12| � lB we obtain the main qualitative
result,

|Cs(r1, r2;B)| ∝ exp (−αs|r12|/lB) , (8)

which decays significantly more slowly than in the bulk,
see Eq. (7). A similar enhancement of electron tunneling
due to the surface effects was pointed out in Ref. [12]
in the context of hopping transport in strong magnetic
fields. The similarity is only formal, as we consider here
the case of a classically weak magnetic field which does
not bend the diffusive trajectories of electrons and enters
only through the accumulation of Aharonov-Bohm phase.

Quantitative analysis of the cooperon – The qualitative
picture above is borne out by quantitative analysis. The
cooperon represents the resolvent of the modified diffu-
sion equation [2],

~D [−i∇− (2e/~c)A(r)]
2
χβ(r) = εβχβ(r), (9a)

n · [−i∇− (2e/~c)A(r)]χβ(r)|r∈B = 0. (9b)

In the boundary condition (9b) n is a vector normal to
the boundary B. The vector potential A describes the ef-
fect of the Aharonov-Bohm phase accumulation and the
boundary condition corresponds to the absence of current
through the boundary. The eigenvalues εβ are gauge in-
variant and in many cases (see below) the physical effects
are determined only by them. The cooperon (3) can be
easily expressed as C(r1, r2) =

∑
β χβ(r1)χ∗β(r2)/εβ .

To investigate the surface contribution to Aharonov-
Bohm oscillations in a singly-connected sample it is suf-
ficient to use the simplest disk geometry shown on Fig. 1
e. Equations (9) are easily solved in the polar coordi-
nates r, ϕ in the symmetric gauge Ar = 0, Aϕ = − rB2 .
The eigenstates in this case are labeled by two integers
β → (n,m), where m is the angular momentum, and

n ≥ 0 is the radial number. The wave functions are of the
form χ = eimϕfnm(r/lB). The eigenvalue εnm = λnm~D/l2B ,
and the radial wave function fnm(ρ) (ρ = r/lB) obey the
dimensionless differential equation[
− d2

dρ2
− 1

ρ

d

dρ
− 2m+

m2

ρ2
+ ρ2

]
fnm(ρ) = λnmf

n
m(ρ).

(10)

The Neumann boundary condition
dfn

m

dρ

∣∣∣
ρ=R/lB

= 0

makes this problem different from that for an electron
in a magnetic field. The solution of Eq. (10) that is reg-
ular at ρ = 0 may be expressed in terms of the confluent
hypergeometric function Φ(α, β, z),

fnm(ρ) = e−ρ
2/2ρ|m|Φ

(
|m|+ 1−m

2
− λnm

4
, |m|+ 1, ρ2

)
.

The eigenvalues λnm are found from the boundary con-
dition at ρ = R/lB . For small angular momenta,
m � R/lB , they correspond to degenerate Landau lev-
els, λnm = 4n + 2. Near near the boundary they show
significant deviations. For the two lowest Landau levels
λnm are plotted in Fig. 2 for Φ/Φ0 = 25.
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FIG. 2. Cooperon eigenvalues calculated for a disk geometry.
The drop near m = m∗ corresponds to the interference of
diffusion trajectories near the boundary shown in Fig. 1.

As shown below, the magnitude of the Aharonov-Bohm
oscillations is governed by the spectrum in the vicinity
of the lower boundary, λ∗ = minmλ

0
m ≈ 1.18, which is

achieved at m = m∗ ≈ Φ/Φ0. Near the minimum the
spectrum may be approximated as

λ0(m) ≡ λ0m ≈ λ∗
(

1 +
(m−m∗)2

κ2m∗

)
; m∗ ≈ Φ

Φ0
� 1,

(11)
where κ ≈ 1.4.

To make a connection wirth the boundary contribu-
tion to the cooperon, Eq. (8), we analyze the asymptotic
behavior of the exact expression

C(r, r′) =
∑
mn

eim(ϕ−ϕ′)fnm(r/lB).fnm(r′/lB)

εnm
.
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At large distances, |ϕ − ϕ′|m∗ � 1 and r ' r′ ' m∗lB ,
the exponential decay is determined by the pole closest
to the real axis, and we obtain

C ' exp
[
im∗(ϕ− ϕ′)− κ

√
m∗|ϕ− ϕ′|

]
,

which corresponds to the edge physics discussed above.

Physical manifestations – The surface contribution to
the cooperon gives rise to anomalous magnetic field de-
pendence of the well known quantum interference correc-
tions to thermodynamic and transport characteristics of
disordered conductors. To be concrete, we consider the
simplest fluctuation correction to the thermodynamics of
superconductor in the normal state. The surface contri-
bution becomes especially pronounced in the vicinity of
the critical field Hc3 [13]. The fluctuation correction to
the free energy, which my be probed in high precision
persistent current measurements (see Ref. 14 and refer-
ences therein), is connected to the eigenvalues (10) by [2]

δF = T
∑
k,n,m

ln

[
ln

(
T

Tc0

)
+ Ψ

(
|k|
2

+
~Dλnm
4πl2BT

)]
, (12)

where Ψ(x) ≡ ψ(x + 1/2) − ψ(1/2), ψ(x) being the
digamma function. The k = 0 Matsubara frequency cor-
responds to the classical fluctuations. Quantum fluctua-
tions are encoded in the summation over all k.

At zero magnetic field min εβ = 0 and the correction
(12) is meaningful only for T > Tc0, where the normal
phase is stable. At a finite magnetic field λnm ≥ λ∗ > 0,
and the normal phase is stable even at T < Tc0 for B >
Hc3(T ), where surface superconductivity emerges [13],

ln (Tc0/T ) = Ψ
(
λ∗eDHc3(T )/[4πcT ]

)
. (13)

The part of the free energy oscillating with the total flux
Φ can easily be found using Eqs. (10) – (12). Summing
over m with the aid of the Poisson summation formula,
we obtain to leading exponential accuracy

Fos = T
∑
k,j 6=0

∫ ∞
−1/2

dmei2πjm

× ln

[
ln

(
T

Tc0

)
+ Ψ

(
|k|
2

+
λ0(m)eDB

4πcT

)]
.(14)

At m∗ � 1 the integral is determined by the branch cut
of the logarithm. The branching point mb is determined
by λ0(mb) = λ∗Hc3/B − 2πcT |k|/(eDB). Near Hc3 this
condition can be simplified using Eqs. (11) and (13),

mb = m∗ ± iκ
√
m∗

√
B −Hc3(T )

B
+

2eγ |k|T
Tc0

Hc3(0)

B
,

where γ ≈ 0.577 is the Euler-Mascheroni constant. In-
tegrating along the branch cut and summing over the

Matsubara frequencies k we obtain

F = −T
∞∑
j=1

2

j
cos

(
2πjΦ

Φ0

)
exp

(
−j p

ξ3

)

× coth

(
j
p

ξ3

eγTHc3(0)

2Tc0[B −Hc3(T )]

)
. (15)

Here the correlation length ξ3 is determined by the prox-
imity of the magnetic field to the value of Hc3(T ),

ξ3 =
lB
κ

√
B

B −Hc3
,

and p = 2πR is the sample perimeter. To arrive at
Eq. (15) we used the relation

√
m∗ = p/(2πlB). In this

form Eq. (15) remains valid for samples of non-circular
shape. The function cothx in (15) describes the crossover
between the classical (at x� 1) and quantum (at x� 1)
fluctuation regimes. In contrast to a bulk system the
characteristic crossover scale depends on the boundary
length, which reflects the surface origin of the effect.

Equation (15) is the main illustrative result for the
surface interference contribution we discussed. Similar
oscillations should also appear not in the transport prop-
erties of mesoscopic singly connected devices, e.g. the
Aslamazov-Larkin corrections to the conductance [15] of
normal systems or superconductor/normal metal hybrid
structures, resembling the results [16] for thin cylinders.
Quantitative investigation of transport effects requires
analysis of current redistribution near the edges of the
sample and will be reported elsewhere. Oscillatory flux
dependence of the conductance of singly connected wires
and SNS junctions was recently reported in Refs. 17–20.
The observations of Ref. 19 were interpreted in Ref. 21
in terms of formation of superconducting vortices inside
the sample. Our findings show that oscillatory flux de-
pendence of the properties of diffusive singly connected
conductors is a much more general phenomenon which
occurs even in the absence of superconductivity.
In conclusion, we identified a novel contribution to the

magnetic field dependence of quantum interaction cor-
rections in finite conductors. It arises from diffusive tra-
jectories confined to the surface of the sample and gives
rise to Aharonov-Bohm oscillations even in singly con-
nected samples. In non-singly-connected samples or sam-
ples with holes or cavities, AB oscillations will have mul-
tiple periods determined by the areas of extremal sections
for each bounding surface.
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