
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Breakdown of the Fermi Liquid Description for Strongly
Interacting Fermions

Yoav Sagi, Tara E. Drake, Rabin Paudel, Roman Chapurin, and Deborah S. Jin
Phys. Rev. Lett. 114, 075301 — Published 19 February 2015

DOI: 10.1103/PhysRevLett.114.075301

http://dx.doi.org/10.1103/PhysRevLett.114.075301


Breakdown of Fermi liquid description for strongly interacting fermions

Yoav Sagi∗, Tara E. Drake∗, Rabin Paudel, Roman Chapurin & Deborah S. Jin∗∗
∗These authors contributed equally to this work.

∗∗To whom correspondence should be addressed; E-mail: jin@jilau1.colorado.edu.
JILA, National Institute of Standards and Technology and the University of Colorado,
and the Department of Physics, University of Colorado, Boulder, CO 80309-0440, USA

(Dated: January 19, 2015)

The nature of the normal state of an ultracold Fermi gas in the BCS-BEC crossover regime is an
intriguing and controversial topic. While the many-body ground state remains a condensate of paired
fermions, the normal state must evolve from a Fermi liquid to a Bose gas of molecules as a function
of the interaction strength. How this occurs is still largely unknown. We explore this question with
measurements of the distribution of single-particle energies and momenta in a nearly homogeneous
gas above Tc. The data fit well to a function that includes a narrow, positively dispersing peak
that corresponds to quasiparticles and an “incoherent background” that can accommodate broad,
asymmetric line shapes. We find that the quasiparticle’s spectral weight vanishes abruptly as the
strength of interactions is modified, which signals the breakdown of a Fermi liquid description. Such
a sharp feature is surprising in a crossover.

PACS numbers: 67.85.Lm,03.75.Ss

Landau’s Fermi liquid theory is a well-established and
powerful paradigm for describing systems of interacting
fermions [1, 2]. It postulates that even in the presence
of strong interactions, the system retains a Fermi sur-
face and has low energy excitations that are long-lived,
fermionic, and nearly non-interacting. The effect of in-
teractions is incorporated into renormalized properties of
these quasiparticle excitations, such as an effective mass,
m∗, that is larger than the bare fermion mass, m, and a
spectral weight, or quasiparticle residue, that is between
zero and one [2]. While Fermi liquid theory is extremely
successful in describing a wide range of materials, it fails
in systems exhibiting strong fluctuations or spatial cor-
relations. Understanding the origin of such breakdowns
of a Fermi liquid description is an outstanding challenge
in strongly correlated electron physics [3].

An ultracold Fermi gas with tunable interactions is a
paradigmatic strongly correlated system. These atomic
gases provide access to the crossover from Bardeen-
Cooper-Schrieffer (BCS) superconductivity to Bose-
Einstein condensation (BEC) of tightly bound fermion
pairs [4–8]. The question of whether the Fermi liq-
uid paradigm breaks down in the normal state of the
crossover is related to the prediction of a “pseudogap”
phase, where incoherent many-body pairing occurs above
the transition temperature Tc. This pseudogap phase has
bosonic (pair) excitations, in contrast to the fermionic ex-
citations of a conventional Fermi liquid. In experiments
that probed the strongly interacting gas in the middle
of the crossover, Fermi-liquid-like behavior was observed
in thermodynamics [9, 10] and spin transport proper-
ties [11]. Meanwhile, evidence for pairing above Tc was
reported in photoemission spectroscopy (PES) measure-
ments [12], which reveal the distribution of single-particle
energies and momenta in a many-body system [13, 14].

Interpretation of these data has been controversial, with
a Fermi liquid theory and a pseudogap theory each sepa-
rately argued to agree with the observations [15–17]. Is-
sues raised include the fact that the PES measurements
probed a trapped gas, where averaging over the inhomo-
geneous density can obscure the intrinsic physics [15, 18],
and that thermodynamics measurements are relatively
insensitive to a pseudogap compared to spectroscopy.
Thus, the question of how a Fermi liquid evolves into
a Bose gas of paired fermions in the BCS-BEC crossover,
and whether a Fermi liquid description breaks down, re-
mains open. Here, we answer this question with the
first PES of a nearly homogeneous Fermi gas; we per-
form measurements above Tc for a range of interaction
strengths through the crossover (Fig. 1a), and find that
quasiparticle excitations, which exist on the BCS side,
vanish abruptly beyond a certain interaction strength on
the BEC side.

We prepare a gas of 40K atoms in an equal mixture
of two spin states, where the scattering length, a, that
parametrizes the interactions is varied using a Fano-
Feshbach scattering resonance [22] (see Fig. 1a and
Supplementary Information). To eliminate the compli-
cations arising from density inhomogeneity, we combine
momentum-resolved rf spectroscopy [13] (Fig. 1b) with
spatially selective imaging that probes only atoms from
the trap center where the density is the highest and
has the smallest spatial gradients [20] (Fig. 1c). The
lower panel of Fig. 1d shows PES data taken above
Tc for several values of (kFa)−1, where kF is the Fermi
wave number. The PES signal, I(k,E), is proportional
to k2A(k,E)f(E), where A(k,E) is the atomic spectral
function [13, 23] and f(E) is the Fermi function. Here,
E and k are in units of EF and kF , respectively, and we
normalize each data set so that the integral over all k
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FIG. 1. Atom PES data. a, We take data above Tc in the strongly interacting region of the BCS-BEC crossover[19]. After
initially preparing the gas at small, positive a, the magnetic field is swept adiabatically to a final value within the BCS-BEC
crossover, where |(kF a)−1| < 1. b, Schematically, an rf photon, which has a negligible momentum, transfers an atom from the
strongly interacting state (blue line) to a weakly interacting state (green line). The energy and momentum of the atom in the
strongly interacting state are extracted from the measured momentum of the spin-flipped atom and the rf detuning ν [13]. The
detuning, ν, of the rf frequency is varied to obtain data for a wide range of E and k. c, Immediately following the rf pulse
and before time-of-flight expansion, two orthogonally propagating hollow-core beams optically pump atoms at the edges of the
outcoupled atom cloud into a dark state [20, 21]. The durations of both the rf pulse and optical pumping are short compared
to motion of atoms in the trap. d (lower panel), In these example plots of PES data, the color represents the probability
distribution of atoms at a given E and k in the strongly interacting gas. We estimate that the error bar of (kF a)−1 is 0.03.
E = 0 is the energy of a free atom at rest and the white line shows the free-particle dispersion E = k2. d (upper panel),
Our two-mode fit function includes a fermionic quasiparticle part, shown on the left with m∗ = 1.05, E0 = −0.1, µ = 0.5, and
T = 0.25, and an incoherent part, shown on the right with Ep = 1.5 and Tp = 0.7.

and E equals 1.

The data in Fig. 1d show an evolution from a posi-
tively dispersing, quasiparticle-like spectrum to a broad,
negatively dispersing spectrum. Previous trap-averaged
atom PES data showed back-bending and large energy
widths [12, 16]. These features are also apparent in the
nearly homogeneous data [24]. However, these data are
more amenable to quantitative analysis because kF (and
EF ) are approximately single-valued across the sample.
Similar to the analysis done in electron systems, we use
a two-mode function to describe the PES signal [25]:

I(k,E) = ZIcoherent(k,E)+(1−Z)Iincoherent(k.E) , (1)

where the first part describes quasiparticles with a pos-
itive dispersion, the second part accommodates an “in-
coherent background” that exhibits negative dispersion,

and Z is the quasiparticle spectral weight. When these
two parts (defined below) are combined, the resulting
dispersion can exhibit back-bending.

The quasiparticles in Fermi liquid theory are long-lived
and therefore give rise to narrow energy peaks, which,
in principle, could be directly observed. However, such
peaks would be broadened by our experimental resolution
of about 0.25EF . This resolution is set by the number
of atoms (with EF scaling only weakly with increasing
N) and the rf pulse duration (see Supplementary Infor-
mation), which must be short compared to the harmonic
trap period in order to probe momentum states. We
convolve Eqn. 1 with a Gaussian that accounts for our
energy resolution before fitting to the data in order to
determine the spectral weight of the quasiparticles (Fig.
1d, upper panel).

To describe quasiparticles, we use

Icoherent(k,E) = 4πk2 · δ(E − k2

m∗
− E0)

[
− (πm∗T )

3/2
Li3/2

(
− exp

(
−E0+µ

T

))]−1
exp

(
E−µ
T

)
+ 1

, (2)
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FIG. 2. EDCs for atom PES data near unitarity. Data
(circles) and fits (lines) are shown for several example traces
at fixed k through the PES data at (kF a)−1 = −0.08. These
traces are often called energy distribution curves, or EDCs.
Here, the fitting parameters are Z = 0.37±0.03, m∗ = 1.22±
0.03, T = 0.24 ± 0.02, E0 = −0.33 ± 0.02, µ = 0.19 ± 0.04,
Ep = 0.23±0.04, Tp = 1.09±0.08, where the error margins are
for one standard deviation and also include a 5% uncertainty
in EF . For this fit, the reduced χ2 is 1.2.

which consists of a quadratic dispersion of sharp quasi-
particles multiplied by a normalized Fermi distribution
(δ is the Dirac delta function, and Li is the polyloga-

rithm function). We include as fit parameters, a Hartree
shift E0, effective mass m∗, chemical potential µ, and
temperature T . Here, energies are given in units of EF
and m∗ in units of m. This description of Fermi liquid
quasiparticles is typically only used very near kF and for
T approaching zero, whereas we fit to data for a larger
range in k and with temperatures near 0.2 TF (just above
Tc). The latter is necessitated by the unusually large in-
teraction energy compared to EF , and we note that 0.2
TF is still sufficiently cold that one can observe a sharp
Fermi surface in momentum [20]. Any increase in quasi-
particle widths away from kF will have little effect on the
data as long as the quasiparticles have an energy width
less than our energy resolution, which should be the case
for long-lived quasiparticles. Finally, using a quadratic
dispersion over a large range of k is supported by the
data [24].

The second part in Eq. 1 needs to accommodate the
remainder of the signal, which is often referred to as an
“incoherent background” in a Fermi liquid description.
For fermions with contact interactions, one expects an
incoherent background at high momentum due to short-
range pair correlations [26–28]. Motivated by this and by
the normal state in the BEC limit, we use for Iincoherent a
function that describes a thermal gas of pairs. The pairs
have a wave function that decays as exp (−r/R), where
r is the relative distance and R is the pair size [29], and
a Gaussian distribution of center-of-mass kinetic energies
characterized by an effective temperature Tp. This gives

Iincoherent(k,E) = Θ
(
−Ep − E + k2

) 8k
√

Ep

Tp
e

Ep+E−3k2

Tp sinh

(
2
√
2k
√
−Ep−E+k2

Tp

)
π3/2 (E − k2)

2 (3)

where Θ is the Heaviside step function, Ep is a pairing

energy defined by kFR =
√

2/Ep, and both Ep and Tp
are dimensionless fitting parameters (see Supplementary
Information). While this description of the incoherent
piece may not fully capture the microscopic behavior ex-
cept in the BEC limit, we find nonetheless that Eq. 1,
after convolution with a Gaussian that accounts for our
energy resolution, fits the data very well throughout the
crossover. For each value of (kFa)−1, we perform a sur-
face fit to the roughly 300 points that comprise the PES
data I(k,E) for k ≤ 1.5 and E ≥ −3. The reduced chi-
squared statistic, χ2, after accounting for the seven fit
parameters, is between 0.75 and 1.3. An example fit is
shown in Fig. 2, where we show several traces at fixed k
for PES data taken near unitarity.

In Fig. 3a, we show Z as a function of (kFa)−1. For our
lowest (kFa)−1, Z ≈ 0.8; however, Z decreases rapidly

going from the BCS side of the crossover (negative a) to
the BEC side (positive a), reaching Z ≈ 0.3 at unitarity.
Beyond (kFa)−1 = 0.28 ± 0.02, Z vanishes, signalling
the breakdown of a Fermi liquid description. Restricting
the fitting to a smaller region around kF gives results
for Z that are consistent with the fits to k ≤ 1.5 (see
Fig. 3a). We note that the interaction strength where Z
vanishes, as well as the sharpness with which Z goes to
zero, are likely to be temperature dependent [31]. The
best fit values for the effective mass, m∗ are shown in
Fig. 3b, where m∗ increases with increasing interaction
strength as expected for a Fermi liquid. A linear fit gives
m∗ = 1.21± 0.03 at unitarity, which is somewhat higher
than m∗ = 1.13± 0.03 measured in Ref. [9], but close to
the T = 0 prediction of m∗ = 1.19 from Ref. [18]. The
other fit parameters for the two-mode function are shown
in Fig. S4 in Ref. [24].

We note an interesting comparison of our results with
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FIG. 3. Z and effective mass. a, The quasiparticle
spectral weight Z decreases as (kF a)−1 increases. Using a
linear fit to the range −0.5 ≤ (kF a)−1 ≤ 0.3, we find that Z
vanishes at (kF a)−1 = 0.28 ± 0.02 (dashed line); this marks
the breakdown of a Fermi liquid description. The blue circles
come from fits of a large range of data, from 0 to 1.5 kF .
The red squares show the result of restricting the fit to 0.7
to 1.3 kF , and they show a similar trend and slightly larger
error bars. b, The quasiparticle effective mass m∗ is shown
for the region where Z > 0. Interactions increase m∗, and
the data (circles) agree surprisingly well with the theoretical
prediction for the limiting case of the Fermi polaron (solid
line)[10, 30]. Restricting the fit to EDCs close to the Fermi
surface produces similar results with increased error bars (red
squares).

the Fermi polaron, which is the quasiparticle in the limit
of a highly imbalanced Fermi gas. Schirotzek et al. mea-
sured Z = 0.39± 0.09 for the Fermi polaron at unitarity
[32], which is similar to our result for the balanced Fermi
gas. For the polaron case, Z also goes to zero in a simi-
lar fashion to our results, but farther on the BEC side of
the crossover [32]. This similarity is surprising because
we expect a phase transition from polarons to molecules
in the extreme imbalance limit [33, 34], with Z acting
as an order parameter [35], while, in contrast, the bal-
anced Fermi gas should exhibit a continuous crossover.
For m∗, we also find that our result is close to the mea-
sured effective mass of the Fermi polaron at unitarity [9],
m∗ = 1.20 ± 0.02, and similar to the predicted polaron
mass [10, 30] throughout our measurement range (dashed
line in Fig. 3b).

As (kFa)−1 increases, short-range correlations are ex-
pected to increase. This gives rise to increased weight
in the high-k part of the spectral function [28], which is
quantified by a parameter called the contact [21, 26, 27,
36]. In a Fermi liquid description, the contact must be
accounted for by the incoherent part of the spectral func-
tion [28]. We note that our particular choice for Iincoherent
has the expected form of a 1/k4 high-k tail in the mo-
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FIG. 4. The contact parameter. From the PES data, we
extract the contact per particle (in units of kF ) for a homo-
geneous Fermi gas above Tc as a function of the interaction
strength (kF a)−1. The contact measured from the tail of the
rf lineshape[24], using data for hν ≥ 5EF , is shown in blue
circles, while the contact extrapolated from the fits of the
PES data is shown in red squares. Remarkably, even though
we limited the fits of the PES data to k ≤ 1.5 and E ≥ −3,
a region with a relatively small contribution of short-range
correlations [21, 26, 27, 36], we find that the contact from the
PES fits is consistent with the contact measured from the tail
of the momentum-integrated rf line shape. For comparison
with the data, we also plot the BCS (dashed black line) and
BEC (dashed magenta line) limits, given by 4(kF a)2/3 and
4π(kF a)−1, respectively [27], the non-self-consistent t-matrix
at T = 0 (dotted blue line) and its Popov version at Tc (dash-
dotted red line) [38], and the self-consistent t-matrix model
at T = 0 (double-dotted green line) [18]. Interestingly, we
find that the contact measured above Tc agrees well with the
T = 0 theories.

mentum distribution [26] and a 1/ν3/2 large-ν tail in the
rf line shape [27], where ν is the rf detuning. Remarkably,
we find that the contact can be accurately extracted from
the fits to the PES data even though we restrict the fits
to k ≤ 1.5. For comparison, 1/k4 behavior in the mo-
mentum distribution was observed for k > 1.5kF [36]. In
Fig. 4, we plot the measured contact per particle, C/N ,
in units of kF , as a function of (kFa)−1. The data ex-
tend previous measurements of the contact at unitarity
[21, 37] and agree well with several theoretical predictions
[18, 38].

The results presented here can explain how different
observations lead to different conclusions regarding the
nature of the normal state of the unitary Fermi gas.
Although the data here taken just above Tc show that
a Fermi liquid description breaks down for (kFa)−1 ≥
0.28±0.02, Z remains finite at unitary. Fermionic quasi-
particles may play a key role in thermodynamics, while
PES data reveal back-bending and significant spectral
weight in an “incoherent” part that is consistent with
pairing. With the nearly homogeneous PES data, we
find that Z vanishes surprisingly abruptly and note some
similarity to Fermi polaron measurements. Comparing
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the PES data with various BCS-BEC crossover theories
may help elucidate these observations and advance quan-
titative understanding of the crossover.
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