
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonhelical Inverse Transfer of a Decaying Turbulent
Magnetic Field

Axel Brandenburg, Tina Kahniashvili, and Alexander G. Tevzadze
Phys. Rev. Lett. 114, 075001 — Published 19 February 2015

DOI: 10.1103/PhysRevLett.114.075001

http://dx.doi.org/10.1103/PhysRevLett.114.075001


NORDITA-2014-42

Nonhelical inverse transfer of a decaying turbulent magnetic field

Axel Brandenburg,1, 2, ∗ Tina Kahniashvili,3, 4, 5, † and Alexander G. Tevzadze6, ‡

1Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
2Department of Astronomy, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden

3The McWilliams Center for Cosmology and Department of Physics,

Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
4Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C, Canada

5Abastumani Astrophysical Observatory, Ilia State University,

3-5 Cholokashvili Ave, Tbilisi, GE-0194, Georgia
6Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Ave., Tbilisi, 0128, Georgia

(Dated: Received 8 April 2014; January 20, 2015; Revision: 1.66 )

In the presence of magnetic helicity, inverse transfer from small to large scales is well known
in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and
fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-
similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of
magnetic helicity. We compute for the first time spectral energy transfer rates to show that this
inverse transfer is about half as strong as with helicity, but in both cases the magnetic gain at large
scales results from velocity at similar scales interacting with smaller-scale magnetic fields. This
suggests that both inverse transfers are a consequence of a universal mechanisms for magnetically
dominated turbulence. Possible explanations include inverse cascading of the mean squared vector
potential associated with local near two-dimensionality and the shallower k2 subinertial range spec-
trum of kinetic energy forcing the magnetic field with a k4 subinertial range to attain larger-scale
coherence. The inertial range shows a clear k−2 spectrum and is the first example of fully isotropic
magnetically dominated MHD turbulence exhibiting weak turbulence scaling.

PACS numbers: 98.70.Vc, 98.80.-k

The nature of magnetohydrodynamic (MHD) turbu-
lence has received significant attention in recent years
[1]. Whenever plasma is ionized, it is electrically conduct-
ing and Kolmogorov’s turbulence theory [2] has to be re-
placed by an appropriate theory for MHD turbulence [3].
This becomes relevant under virtually all astrophysical
circumstances. However, the universal character of MHD
turbulence is debated and several fundamental questions
remain unanswered: how do kinetic and magnetic energy
spectra look like and are they similar? How does this de-
pend on the magnetic Prandtl number, PrM = ν/η, i.e.,
the ratio of kinematic viscosity and magnetic diffusivity?
What is the role of the Alfvén effect, i.e., how does the
presence of a finite Alfvén speed vA enter the expression
for the turbulent energy spectrum?

If the spectral properties of MHD turbulence are gov-
erned solely by the rate of energy transfer ǫ, we know
from dimensional arguments that the spectrum must
scale as E(k) ∼ ǫ2/3k−5/3 with wavenumber k. However,
MHD turbulence becomes increasingly anisotropic to-
ward small scales [4], so the spectrum E(k⊥, k‖) depends
on the wavenumbers perpendicular and parallel to the

magnetic field B, and is essentially given by ǫ2/3k
−5/3
⊥ ,

so most of the energy cascades perpendicular to B.
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In the case of forced turbulence, direct numerical sim-
ulations (DNS) show similar spectra both with imposed
[1] and dynamo-generated [5] fields. However, when B

is decaying, the result depends on the value of the initial
ratio vA/urms of root mean square (rms) Alfvén speed
to rms turbulent velocity. Recent DNS [6] found nu-
merical evidence for three different scalings: Iroshnikov–
Kraichnan scaling [7] proportional to (ǫvA)

1/2k−3/2 for
vA/urms = 0.9, Goldreich–Sridhar scaling [4] propor-

tional to ǫ2/3k
−5/3
⊥ for vA/urms = 1.3, and weak tur-

bulence scaling [8] proportional to (ǫvAk‖)
1/2k−2

⊥ for
vA/urms = 2.0; see Ref. [9] for a comparison of these
three scalings. However, their physical interpretation is
subject to criticism in that dynamic alignment between
u and B can be responsible for the shallower k−3/2 scal-
ing [10] and the k−2 scaling could also be caused by a
dominance of discontinuities [11].

It is usually taken for granted that for non-helical tur-
bulence, energy is cascading toward small scales. An in-
verse cascade has so far only been found for helical tur-
bulence [3, 12] and was confirmed in DNS [13–15]. It
is evident that this requires significant scale separation,
k0/k1 ≫ 1, where k0 is the wavenumber of the peak of
the spectrum and k1 = 2π/L is the minimal wavenumber
of the domain of size L. Since an inverse transfer was not
expected to occur in the absence of helicity, most previ-
ous work did not allow for k0/k1 ≫ 1. However, when
k0/k1 is moderate, some inverse cascading was found [14].
The present work shows that this behavior is genuine and
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FIG. 1: (Color online) (a) Magnetic (solid lines) and kinetic
(dashed lines) energy spectra for Run A at times t/τA = 18,
130, 450, and 1800; the time t/τA = 450 is shown as bold
lines. The straight lines indicate the slopes k4 (solid, blue),
k2 (dashed, blue), and k−2 (red, solid). (b) Same for Run B,
at t/τA = 540, 1300, and 1800, with t/τA = 1300 shown as
bold lines. The insets show EM and EK compensated by EWT.

more pronounced at higher resolution, larger Reynolds
numbers and larger k0/k1.

We solve the compressible MHD equations for u, the
gas density ρ at constant sound speed cs, and the mag-
netic vector potential A, so B = ∇ ×A. Following our
earlier work [16–18], we initialize our decaying DNS by
restarting them from a snapshot of a driven DNS, where
a random forcing was applied in the evolution equation
for A rather than u [19]. To allow for sufficient scale sep-
aration, we take k0/k1 = 60. We use the Pencil Code

[29] at a resolution of 23043 meshpoints on 9216 proces-
sors. The code uses sixth order finite differences and a
third order accurate time stepping scheme.

Our magnetic and kinetic energy spectra are nor-
malized such that

∫
EM(k, t) dk = EM(t) = v2A/2 and∫

EK(k, t) dk = EK(t) = u2
rms/2 are magnetic and kinetic

energies per unit mass. The magnetic integral scale is
defined as ξM = k−1

M (t) =
∫
k−1EM(k, t) dk/EM(t). Time

is given in initial Alfvén times τA = (vA0k0)
−1, where

vA0 = vA(0). In Fig. 1 we show EM(k, t) and EK(k, t)
for Runs A and B (restarted from A at t/τA = 450) with
PrM = 1 and 10, respectively, and in Fig. 2 slices Bz(x, y)

FIG. 2: (Color online) Contours of (a) Bz(x, y) and (b)
uz(x, y) for Run A. The insets show a zoom into the small
square in the lower left corner.

and uz(x, y) at z = 0 at the last time Run A. We find an
inertial range with weak turbulence scaling,

EWT(k, t) = CWT(ǫvAkM)1/2k−2, (1)

where k−1
M (t) =

∫
k−1EM(k, t) dk/EM(t) is the integral

scale and kM has been used in place of k‖. The prefactor
is CWT ≈ 1.9 for PrM = 1 and ≈ 2.4 for PrM = 10; see
the insets. In agreement with earlier work [3, 17], EM
decays like t−1.
At small wavenumbers the k4 and k2 subinertial ranges

respectively for EM(k, t) and EK(k, t) are carried over
from the initial conditions. The k4 Batchelor spectrum
is in agreement with the causality requirement [30, 31] for
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FIG. 3: (Color online) Spectral transfer function Tkpq, (a) as a function of k and summed over all p and q, (b) as a function of
p and q for k/k1 = 4, and (c) as a function of k and q for p/k1 = 4. The dashed line in (a) and the insets in (b) and (c) show
the corresponding case for a DNS with helicity; both for PrM = 1.

the divergence-free vector field B. The velocity is driven
entirely by the magnetic field (no kinetic forcing) and
follows a white noise spectrum, EK(k) ∝ k2 [31]. The
resulting difference in the scaling implies that, although
magnetic energy dominates over kinetic, the two spec-
tra must cross at sufficiently small wavenumbers. This
idea may also apply to incompressible [32] and relativis-
tic [33] simulations, where inverse nonhelical transfer has
recently been confirmed.

To quantify the nature of inverse transfer we show in
Fig. 3 representations of the spectral transfer function
Tkpq = 〈Jk ·(up×Bq)〉 and compare with the correspond-
ing helical case of Ref. [18], but with 10243 mesh points
and at a comparable time. Here, the superscripts indi-
cate the radius of a shell in wavenumber space of Fourier
filtered vector fields; see Ref. [15] for such an analysis
in driven helical turbulence. The transfer function Tkpq

quantifies the gain of magnetic energy at wavenumber k
from interactions of velocities at wavenumber p and mag-
netic fields at wavenumber q. Fig. 3(a) shows a gain for
k/k0 < 0.1, which is about half of that for the helical case.
The corresponding losses for k/k0 > 0.1 are about equal
in the two cases. In both cases, the magnetic gain at
k/k0 = 0.07 = 4/60 results from up with 0 < p/k0 < 0.2
interacting with Bq at q/k0 > 0.1; see the light yellow
shades in Fig. 3(b). Note that work done by the Lorentz
force is 〈up · (Jk ×Bq)〉 = −Tkpq. Thus, negative values
of Tkpq quantify the gain of kinetic energy at wavenumber
p from interactions of magnetic fields at wavenumbers k
and q. Blue dark shades in Fig. 3(c) indicate therefore
that the gain of kinetic energy at p/k0 = 0.07 results
from magnetic interactions at wavenumbers k and q of
around 0.1 k0. These results support the interpretation
that the increase of spectral power at large scales is sim-
ilar to the inverse transfer in the helical case; see [19] for
information concerning the total energy transfer.

To exclude that the inverse energy transfer is a con-

FIG. 4: Time evolution of ξM = k−1
M and ξmin

M , as well as the
Taylor microscale ξTay. Fat (thin) lines are for Run A (B).

sequence of the invariance of magnetic helicity, HM(t) =
〈A · B〉, we compare ξM with its lower bound ξmin

M =
|HM|/2EM [17]; see Fig. 4. In nonhelical MHD turbu-
lence, ξM is known to grow like t1/2 [3, 17]. Even though
the initial condition was produced with nonhelical plane
wave forcing, we find HM 6= 0 due to fluctuations. Since
HM is conserved and EM decays like t−1 [3, 17], ξmin

M

grows linearly and faster than ξM ∼ t1/2, so they will
meet at t/τA = 105 and then continue to grow as t−2/3

[3, 17], but at t/τA = 103 this cannot explain the inverse
transfer. By contrast, we cannot exclude the possibility
of the quasi two-dimensional mean squared vector po-
tential, 〈A2

2D〉, being approximately conserved [19]. This
could explain the ξM ∼ t1/2 scaling and the inverse trans-
fer if the flow was locally two-dimensional [34].

Since urms, vA, and kM are all proportional to t−1/2,
the decay is self-similar in such a way that the Reynolds
and Lundquist numbers, Re = urms/νkM and Lu =
vA/ηkM, remain constant. Since EK ≪ EM, the dissi-
pated energy comes predominantly from −dEM/dt, and
yet a substantial fraction of it is used to drive kinetic
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TABLE I: Comparison of relative dissipation rates, energies
and other parameters for the two simulations discussed.

Run PrM vA0/cs urms/vA Lu Re ǫK/ǫM ǫM/ǫ ǫK/ǫ

A 1 0.15 0.36 700 230 0.52 0.66 0.34

B 10 0.03 0.21 6300 130 0.93 0.52 0.48

energy by performing work on the Lorentz force. Never-
theless, the viscous to magnetic dissipation ratio ǫK/ǫM
increases only by a factor of 1.8 as PrM increases from 1
to 10; see Table I. This is less than for kinetically driven
MHD turbulence, where ǫK/ǫM ∝ PrnM with n = 0.3–0.7
[35]. Therefore, ǫM is here larger than in driven MHD
turbulence, where large Lu can still be tolerated. This
suggests that Run B may be under-resolved, which might
also explain why it did not reach asymptotic scaling in
Fig. 4.

In summary, we have shown that inverse transfer is a
ubiquitous phenomenon of both helical and non-helical
MHD. For helical MHD, this has been well known for
nearly four decades [12], but for nonhelical MHD there
have only been some low resolution DNS [14, 18]. Our
DNS confirm an early finding by Olesen [36] that this in-
verse transfer occurs for all initial spectra that are suffi-
ciently steep. His argument applies to hydrodynamic and
MHD turbulence if the two spectra are parallel to each
other. In our case, however, owing to the shallower k2

spectrum of kinetic energy, kinetic energy always domi-
nates over magnetic at large enough length scales. Either
this or the near-conservation of 〈A2

2D〉 could be respon-
sible for inverse transfer in magnetically dominated tur-
bulence. This process is significant for cosmology and
astrophysics [33], with applications not only to primor-
dial magnetic fields, but also to ejecta from young stars,
supernovae, and active galactic nuclei [37].

Our results support the idea of the weak turbulence
k−2 scaling for strong magnetic field that is here for the
first time globally isotropic and not an imposed one [38].
At small scales, however, approximate equipartition is
still possible. The decay is slower than for usual MHD
turbulence which is arguably governed by the Loitsyan-
sky invariant [39]. Future investigations of the differences
between these types of turbulence are warranted [19]. In-
terestingly, the extended plateau in the velocity spectrum
around the position of the magnetic peak may be im-
portant for producing observationally detectable broad
gravitational wave spectra [40].
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