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We show that the energy-momentum dispersion of a vertical semiconductor microcavity can be
modified by design using a high-index-contrast subwavelength grating (SWG) as a cavity mirror.
We analyze the angular dependence of the reflection phase of the SWG to illustrate the principles of
dispersion engineering. We show examples of engineered dispersions such as ones with much reduced
or increased energy density of states and with a double-well shaped dispersion. This method of
dispersion engineering is compatible with maintaining a high cavity quality factor and incorporating
fully protected active media inside the cavity, thus enabling the creation of new types of cavity
quantum electrodynamics systems.

The energy-momentum dispersion is a fundamental
property of a photonic system. The capability to mod-
ify the dispersion using engineered photonic systems is
at the heart of modern photonic technologies and the
cavity quantum electro-dynamics (CQED) research. For
example, dispersion determines the phase and group ve-
locities, and, thus the propagation of the electromagnetic
modes [1]. Dispersion also controls the density of states
(DOS) of the photonic modes, and, thus the matter-light
interactions in the system [2]. Recently, dispersion en-
gineering has been used in manybody atomic systems to
create synthetic magnetic fields [3], enabling the simula-
tion of quantum orders in non-Abelian gauge fields. It
was also proposed as a method to create exotic quantum
orders in manybody photonic or matter systems [4].

Dispersion engineering has been realized using engi-
neered photonic structures including metamaterials [5–8]
and photonic crystals (PhCs) [9–11]. However, metama-
terials containing metal constituents suffer from intrinsic
ohmic losses; 2D photonic crystals have large radiation
losses for the modes in the light cone. In addition, due
to the large surface-to-volume ratio of metamaterials and
PhCs, active media embedded inside are prone to sur-
face recombination. These effects limit their usage in
applications requiring minimal loss or spatially extended
matter-light coupling.

In this work, we demonstrate a new method to engi-
neer the dispersions of all-dielectric 1D or 2D vertical
microcavities, compatible with lossless embedment of ac-
tive media. We revisit the century-old resonance con-
dition of a Fabry-Perot cavity and demonstrate disper-
sion engineering by designing the angular dependence of
the reflection phase of a non-conventional cavity mirror.
We show that, strong angular dependence of a subwave-
length grating(SWG)’s reflection phase can be achieved
due to the unique symmetry properties of SWGs. As a
result, photonic and polaritonic dispersions can be cre-
ated with curvatures differing by many orders of mag-
nitude. Flat or double-well shaped dispersions can also
be created. Our method of dispersion engineering en-
ables greater flexibility to control the photonic modes
and matter-light interactions in widely used quantum-

well and quantum-dot microcavities. It may allow, for
example, change of the group velocity of the mode, en-
hanced Purcell effect without additional transverse con-
finement, and optimized carrier dynamics for polariton
lasers with lower threshold. It may open a door to the
creation of manybody polariton systems with unusual
dispersions and quantum orders [12].
The energy vs. in-plane momentum dispersion of a

Fabry-Perot type cavity is governed by the angular de-
pendence of the cavity mirrors’s reflection phase. This is
shown by the round-trip phase condition for the cavity
resonance:

φ1(ω, k‖) + φ2(ω, k‖)− 2kc⊥d = 2mπ. (1)

Here ω is the angular frequency of the resonance, k‖ and
kc⊥ are the in-plane and longitudinal wavenumbers in
the cavity layer, respectively, d is the distance between
the two cavity mirrors, and m is an integer. The first
two terms φ1 and φ2 are the reflection phases of the two
cavity mirrors. Eq. 1 uniquely determines the dispersion
relation ω(k‖).
Conventional microcavities use mirrors with a nearly

constant phase over a wide range of angles, resulting in
a rigid quadratic dispersion. Typical vertical microcavi-
ties are made of two distributed Bragg reflectors (DBRs),
each consisting of multiple dielectric layers of alternating
high and low refractive indices. Each layer in a DBR
has an optical path length of λ/4, to maximize the re-
flectance at the design wavelength λ. As a result, the
reflection phase of a DBR is integer times π at normal
incidence and varies very slowly with increasing k‖ [13].
For a λ/2 low-index cavity, φ1(ω, k‖) ≈ φ2(ω, k‖) ≈ π

and m = 0. Using kc⊥ =
√

(ncω/c)2 − k2‖, for small k‖,

we obtain a quadratic dispersion:

ω(k‖) ≈ ω0[1 +
k2‖

2(ncω0/c)2
]. (2)

Here ω0 = ω(k‖ = 0) and nc is the refraction index of
the cavity. For an AlAs cavity, k2‖/(ncω0/c)

2 < 0.1 is
satisfied for an incidence angle up to θ0 = 44◦ in vacuum.
The curvature of the quadratic dispersion is determined
by nc and ω0, with no additional tuning available.
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In contrast, we use an SWG as the cavity mirror[14,
15], which has many tunable parameters, enabling strong
angular dependencies of the reflection phase and thus dis-
persion engineering. A schematic of a SWG-DBR cav-
ity we propose for dispersion engineering is shown in
Fig. 1(a). The top mirror consists of an SWG-suspended
in air. The SWG has three grating parameters: its thick-
ness (tg), period (Λ) and duty cycle (η), as shown in
Fig. 1(b). These parameters, together with the thickness
of the air-gap beneath the SWG, can provide flexibilities
in cavity design that are unavailable in DBR-DBR cavi-
ties. For example, polarization selectivity and resonance
tuning have been demonstrated in vertical cavity surface-
emitting lasers (VCSELs) using SWGs as top-mirrors
[16–20]. Recently, strong-coupling and exciton-polariton
lasing have been demonstrated in a zero-dimensional
SWG-DBR cavity [21, 22]. These works on vertical SWG-
cavities have mainly focused on modes with nearly zero
in-plane momentum. Here we explore the angular de-
pendence of the reflection phase of the SWG to demon-
strate the unique capability of dispersion engineering in
an SWG-based cavity.
Unlike from a DBR, reflection from the periodic SWG

structure is produced by the scattering between the lat-
eral modes inside the SWG and Floquet-form diffraction
modes outside [23–25]. The lateral modes of an SWG is
therefore the key to understand its reflection phase. We
adopt the waveguide-array (WGA) modes formulation,
which was introduced in [25] to explain intuitively the
high reflectance of the SWG at normal incidence. Be-
low we generalize the work in [25] and derive the WGA
modes in SWGs of arbitrary thickness in the general case
of oblique incidence. We will show that, due to symme-
try properties of the grating, the dispersion of the WGA-
modes could shift considerably with the incidence angle,
leading to large changes in the reflection phase.
We treat the SWG as a waveguide array with the z-axis

as the propagation direction, as shown in Fig. 1(b). It is
periodic in the x-direction and translationally invariant
in the y-direction. We focus the discussion on the case
of an incident plane wave propagating in the x-z plane
with an oblique angle θ0 from z-direction. For a WGA
mode with a transverse-magnetic (TM) polarization as
labeled in Fig. 1(b), the lateral mode profile H(x) and
propagation constant β are determined by the eigenvalue
equation,

(
∂2

∂x2
+ n2(x)

ω2

c2
)H(x) = β2H(x), (3)

where n(x) is the refractive index. Because of the peri-
odicity of n(x), the eigenmode can be expressed in the
form of Bloch waves,

H(x) = eikxxun(x),

where eikxx is the Bloch phase factor, kx is the in-plane
wavenumber of the incident wave: kx = ω/c sin θ0, un(x)

Λ

tg

��

kx

ka

�

kb

�

z=0

z=tg

x

z

0
+1

-1

+2

-2

0

+1
+2

-1-2

k0

TM

TE

(a) (b)

0 1 2 3 4 5 6
0

5

10

ωΛ/c

β
Λ

β=
nω

/c

β=ω/c

TM
0

TM
1

TM
2

TM
3
TM

4

ω
c2

ω
c1

ω
c4

ω
c3

 

 

θ
0
=0

°

θ
0
=15

°

θ
0
=30

°

(c)

FIG. 1. (a)Schematic of an SWG-DBR hybrid vertical cav-
ity. The SWG followed by an air-gap and one high-index DBR
layer comprise the top mirror. We use Al0.15Ga0.85As (refrac-
tive index nr=3.58) for the grating bars and high-index DBR
layers, and AlAs (nr=3.02) for the low-index DBR and cav-
ity layers. (b) Cross section of an SWG and the wavevectors
inside and outside the SWG. The SWG is treated as a WGA
between input plane z = 0 and output plane z = tg. The light
outside the WGA is the superposition of diffraction modes,
with only the zero-order mode propagating for an SWG and
the higher-order ones evanescent. φ0 is the reflection phase
of the zero-order wave. (c) The β − ω dispersions of the TM
WGA-modes in an SWG with a duty cycle η = 65%, for in-
cidence angles of 0◦ (blue line), 15◦ (pink) and 30◦ (cyan).
Dash-dotted lines mark modes that cannot be excited. The
zeroth WGA-modes at different angles almost overlap with
the TM0 mode. The higher modes shift with the incidence
angle, leading to large changes in the reflection phase. The
gray shade marks the dual-mode regime at normal incidence.
The black dashed lines are the dispersions of light in homo-
geneous air and grating-bar dielectric medium.

is a periodic function, and the subscript n denotes the
discrete mode number. Given ω and θ0, we can solve for
the eigenvalues β2

n and obtain the ω−β dispersion of the
WGA-modes through [26]:

2n2

bkakb(cos kaa cos kbb− cos kxΛ)

−(n4

bk
2

a + k2b ) sin kaa sin kbb = 0.
(4)

Here nb is the refractive index of the grating bar, a and
b are the widths of the air and bar regions, and ka,b is
the transverse wavenumber in the air or bar region, de-
termined by ka,b =

√

(na,bω/c)2 − β2. An example of a
WGA mode dispersion is shown in Fig. 1(c).
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In the case of normal incidence (blue lines), the inci-
dent wave matches the reflection symmetry of the grating
about the center of the grating bars. Correspondingly,
TM0,2,4,... modes have the same symmetry and thus can
be excited, while the TM1,3,5,... modes have the odd sym-
metry and thus cannot be excited.
In the case of oblique-angle incidence, the incident

plane waves no longer has the reflection symmetry, and
thus the odd-order modes can also be excited. Avoided
crossings between the odd-order and even-order modes
lead to significant shift of the mode dispersions, as illus-
trated in Fig. 1(c).
Reflection from an SWG with a finite thickness tg can

be understood as resulting from the interference of WGA
modes reflected from both the top and bottom SWG-
air interfaces. For a given WGA, for example the WGA
used in Fig. 1(c), we can visualize the dependence of the
reflection on tg using tg-ω maps of the reflectance and
reflection phase, as shown in Fig. 2.
At normal incidence, for each of the WGA mode in

Fig. 1(c), the SWG forms a Fabry-Perot resonator when
the approximated round-trip phase condition βtg = mπ
is satisfied, where m is an integer [27]. We mark
the corresponding tg − ω values in Fig. 2(a)-(b) with
white dashed and dash-dotted lines for the TM0 and
TM2 modes, respectively. The reflectance is nearly zero
around these lines and the reflection phase changes by
π across the lines, which are signatures of Fabry-Perot
resonances. Naturally, high reflectance region exist only
between these lines, when two WGA modes co-exist
and produce nearly perfect destructive-interference at the
output plane of SWG [25, 28].
At oblique angles, the appearance of the odd-order

WGA modes leads to large shifts of the WGA modes,
which manifests as large shifts of the reflectance and
phase patterns on the tg−ω maps. An example is shown
in Fig. 2(c)-(d) for θ0 = 30◦. Consistent with the β − ω
diagram (Fig. 1(c)), the Fabry-Perot resonance lines orig-
inated from the TM0 mode barely move, while those from
the TM2 mode move toward lower frequencies. The high
reflectance regions, as well as the phase in these regions,
move with those “grid lines”. For a certain SWG in the
high-reflectance region, for example the point marked by
a white star in Fig. 2, the reflection phase could become
very different at oblique incidence angles.
Now we show a few examples of dispersion engineer-

ing using SWGs. Two examples of SWGs are shown
in Fig. 3(a), whose reflection phases change significantly
with the incidence angle but in opposite ways. SWG1’s
reflection phase increases by 0.35π from θ0 = 0◦ to 22◦,
while SWG2’s decreases by 0.25π. In comparison, the
reflectance phase of the DBR mirror changes by 0.03π.
When using SWG1 and SWG2 as the top mirrors of

SWG-DBR cavities, the cavity dispersion also changes
drastically from that of the DBR-DBR cavity. As shown
in Fig. 3(b), the SWG1-DBR cavity has a much steeper
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FIG. 2. tg − ω maps of the reflectance ((a) and (c)) and re-
flection phase((b) and (d)) of a SWG with η = 65% for the
TM polarization, under normal incidence ((a) and (b)) and
θ0 = 30◦ oblique incidence ((b) and (d)). The black dash-
dotted lines in (a) and (b) show the dual-mode regime defined
by ωc2 and ωc4 obtained in Fig. 1(c). The dispersions of the
dual WGA modes are plotted as the two sets of white dashed
and dash-dotted lines in all four figures, using the approxi-
mated Fabry-Perot resonance condition of βtg = π. These
lines overlap well with the zero-reflectance (blue) stripes in
(a) and (c). Broadband high-reflectance regions (red) can be
found between those lines. Each point on the figure corre-
sponds to one SWG design. An example is marked by the
white ’+’ symbol, which has a phase shift of ∼ 0.4π over
30◦ while maintaining high-reflectance (> 0.995). The large
phase shift is caused by the large WGA-mode shift, as seen
by comparing the dash-dotted white lines in (b) and (d).

dispersion. Its resonance energy increases to 20 meV
above the DBR-DBR cavity’s resonance at θ0 = 20◦. The
SWG2-DBR cavity, on the other hand, features a nearly
flat dispersion up to k‖ ∼ 2 µm−1, or θ0 ∼ 15◦.

If the bottom DBR is also replaced by an SWG [29], the
round-trip phase change is doubled, giving more tuning of
the cavity dispersion. Fig. 3(c) shows that the dispersions
of the SWG1-SWG1 cavity becomes even steeper, while
the dispersion of SWG2-SWG2 cavity reverses the sign
and becomes negative. Moreover, dispersions of exotic
shapes can also be created, such as the one shown in
Fig. 3(d), which features a double-well shape.

These special dispersions are also robust against small
variations in the grating parameters and thus are achiev-
able with present fabrication technologies [30]. We con-
sider variations in the thickness tg by ±5 nm due to er-
rors in the epitaxial growth, and in the period Λ and bar
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width ηΛ by ±2 nm due to the resolution of electron-
beam lithography. For the SWG1-DBR cavity, its effec-
tive mass m∗ changes by less than 13%; hence the steep
dispersion is well maintained. For the SWG2-DBR cav-
ity, designed to have a flat dispersion, the effective mass
is reduced by 4-folds with 2 nm increase in ηΛ, but re-
mains heavier than that of the DBR-DBR cavity. The
variations due to the e-beam resolution can be further re-
duced by using e-beam dose matrix to create SWGs with
slightly varying Λ and η. For the SWG3-SWG3 cavity,
its resonance changes by less than 0.3 meV, much less
than the well-depth of ∼ 4 meV; hence the double-well
shape is robust against the fabrication errors.

Since dispersion is a fundamental property of a pho-
tonic system, such tunability of the dispersion may en-
able many novel applications. For example, it may be
used to control the propagation of light, since the group
velocity of the photon is proportional to dω/dk. A
steeper or shallower dispersion leads to faster or slower
propagation of light. A nearly flat dispersion may en-
able slow light and storage of light in the cavity. Chang-
ing the dispersion also changes the spontaneous decay
rate of excitations enclosed inside the cavity via Pur-
cell enhancement or suppression [31]. The Purcell fac-
tor is proportional to the energy density of state (DOS)
of photons, which in turn depends on the the effective
mass m∗

≡ ~
2(d2E/dk2)−1 of the cavity modes, or, the

curvature of the dispersion curve. A steep dispersion
will suppress spontaneous emission, while a flat disper-
sion would lead to divergent DOS and a very high Pur-
cell enhancement. The SWG2-DBR cavity, for example,
has an effective mass m∗

≈ −20× 10−5me, more than 6
times heavier than the DBR-DBR cavity’s effective mass
of m∗

≈ 3 × 10−5me. It thus may allow a Purcell en-
hancement of 6-fold compared to a planar DBR-DBR
cavity.

The proposed cavity structure can also be used in po-
lariton systems to control the properties of polariton con-
densates and lasers [32, 33], and to create novel many-
body systems. Unique to the proposed cavity, it simul-
taneous allows lossless integration of active media in the
cavity layer and a high cavity quality factor due to the
high reflectance of the SWG. A zero-dimensional polari-
ton laser was recently demonstrated in a SWG-DBR cav-
ity [21] with a cavity quality factor of a few thousands.
All the SWGs shown in Fig. 3 are optimized for high
reflectance at normal incidence, giving cavity Q > 104.
At oblique angles, their reflectance vary, but the cavity
Q remains above 103 up to θ = ±20◦ [34]. Hence the
strong-coupling regime should be readily reached when
multiple QWs are placed at the anti-nodes of these high-
Q cavities [35].

In the strong-coupling regime, the cavity dispersion is
directly transcribed to the polariton’s [36]. Changing the
effective mass of the polariton, independent from chang-
ing the exciton fraction in the polariton mode, would
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FIG. 3. (a) Comparison of the angular dependence of the
reflection phase of two SWGs with a DBR. φ′

0 is the shifted
reflection phase that starts with zero at normal incidence. (b)
Energy dispersions of cavities with the SWGs and DBR as in
(a) as the top mirror and a bottom DBR with 30 λ/2 pairs.
The linewidths of the cavity resonances δ(~ω) are shown as
the shades, to indicate the quality factors of the cavities Q =
ω/δω. The linewidth corresponding to Q = 103 is marked.
The curvature of dispersion is proportional to the effective
mass defined as m∗ ≡ ~(d2ω/dk2)−1. We obtain at k‖ ∼ 0

an effective mass m∗ ≈ 3× 10−5me for the DBR-DBR cavity,
where me is the mass of an electron. In comparison, m∗ ≈
1×10−5me for SWG1-DBR, m∗ ≈ −20×10−5me for SWG2-
DBR. (c) Energy dispersions of SWG1-SWG1 and SWG2-
SWG2 cavities compared to the DBR-DBR cavity, showing
more substantial tuning of the dispersion than SWG-DBR
cavities. At k‖ ∼ 0, we obtain m∗ ≈ 0.3×10−5me for SWG1-

SWG1, and m∗ ≈ −0.6×10−5me for the SWG2-SWG2 cavity.
(d) A double-well shaped dispersion for TM-polarized light in
the SWG3-SWG3 cavity. The materials used in the cavities
are given in Section 2. All dimensions are scaled to give a
resonance of 1.55 eV at normal incidence. The structural
parameters are as follows: SWG1: Λ=539 nm, tg=350 nm,
η=0.31, TE polarization. SWG2: Λ=328 nm, tg=557 nm,
η=0.65, TM polarization. SWG3: Λ=300 nm, tg=584 nm,
η=0.62, TM polarization.

allow one to control the dynamics and condensate for-
mation. Polaritons systems with a lighter effective mass
without reduced exciton fraction, such as in the SWG1-
DBR cavity, may achieve a higher phase space density
at lower excitation densities. They may enable polariton
lasers at an even lower threshold than demonstrated in
DBR-DBR cavities [37–40], and may facilitate the BEC-
BCS crossover transition [41–43]. On the other hand,
polaritons with a heavy effective mass without reduced
photon fraction, such as in the SWG2-DBR cavity, may
allow rapid thermalization of polaritons while maintain-
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ing robust coherence. That may facilitate the formation
of equilibrium quantum phases in polaritons. Tuning
the polariton dispersion also tunes its group velocity, en-
abling, for example, faster polariton transport within its
short lifetime, or slow light and slow polariton delay lines
in optical and polaritonic circuits [44]. Finally, the flex-
ibility to create dispersion of unusual symmetries may
open a door to novel physics. The double-well disper-
sion in the SWG3-SWG3 cavity may show spontaneous
symmetry breaking when particles relaxes from the meta-
stable zero-k state to the two degenerated ground states.
It may also allow the observation of Josephson effect in
momentum-space [45] and may be extended to create sys-
tem with artificial magnetic fields and topological states
[4, 12].

In short, we showed how to utilize the large angular
dependence of reflection phase of SWGs to engineer the
dispersion of a vertical cavity. The cavity can retain a
high quality factor and is compatible with lossless inte-
gration of active media. The curvature of the dispersion
of SWG based cavities can be tuned by several orders
of magnitude. Even flat, inversed, or double-well shaped
dispersions can be created. Such flexibility in dispersion
engineering may benefit many research areas such as Pur-
cell enhancement in 2D structures, polariton-based lasers
and quantum circuits, and exotic quantum phases in po-
laritons.
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