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We characterize the Mott insulating regime of a repulsively interacting Fermi gas of ultracold
atoms in a three-dimensional optical lattice. We use in-situ imaging to extract the central density
of the gas, and to determine its local compressibility. For intermediate to strong interactions, we
observe the emergence of a plateau in the density as a function of atom number, and a reduction of
the compressibility at a density of one atom per site, indicating the formation of a Mott insulator.
Comparisons to state-of-the-art numerical simulations of the Hubbard model over a wide range of
interactions reveal that the temperature of the gas is of the order of, or below, the tunneling energy
scale. Our results hold great promise for the exploration of many-body phenomena with ultracold
atoms, where the local compressibility can be a useful tool to detect signatures of different phases
or phase boundaries at specific values of the filling.

PACS numbers: 03.75.Ss, 67.85. -d,71.10.Fd

The Hubbard model, which describes spin-1/2
fermions in a lattice with on-site interactions, is one of
the fundamental models in quantum many-body physics.
It is a notable example of how strongly correlated phases
emerge from simple Hamiltonians: it exhibits a Mott
insulating regime, antiferromagnetism, and is widely be-
lieved to support a d-wave superfluid state in two di-
mensions (2D), which could explain high-temperature su-
perconductivity as observed in the cuprates [1]. Despite
intense efforts, an exact solution of the Hubbard model
in more than one dimension and for arbitrary filling has
evaded theoretical and computational approaches to this
day. Complementing these approaches, the last decade
has seen the development of ultracold atoms in optical
lattices as a new and versatile platform for the study
of many-body physics [2, 3]. In this work, we study
a two-spin component degenerate gas of fermions in a
simple cubic lattice, a system which realizes the three-
dimensional (3D) single band Hubbard model.

Previous ground-breaking experiments investigated
the Mott transition in trapped lattice fermions by mea-
suring the variation of the bulk double occupancy with
atom number [4–6] and the response of the cloud radius
to changes in external confinement [7], both of which are
related to the global compressibility. Several key issues,
however, remain to be addressed: (i) As bulk measure-
ments are the result of an average over both metallic and
insulating phases simultaneously present in the trap, how
does the local compressibility behave within the trap? (ii)
How does the compressibility respond at lower temper-
atures, as one approaches the magnetic transition? (iii)
Can more robust theoretical treatments be employed to
benchmark the observed behavior?

In this paper, we address these issues, making signif-

icant progress towards understanding the physics of the
fermionic Hubbard Hamiltonian through optical lattice
emulation. We extract the local compressibility of the gas
from a measurement of the in-situ density profile, a pro-
cedure that has been previously demonstrated for a Fermi
gas in a harmonic potential [8], and for lattice bosons [9].
The local compressibility, as well as the central density of
the gas, are readily compared with numerical simulations
within the local density approximation (LDA). Previous
work has shown that the LDA agrees well with numerical
calculations of the inhomogeneous Hubbard Hamiltonian
away from the quantum critical regime close to the Néel
transition [10–12]. The local character of our measure-
ments allows differentiation between the incompressible
Mott insulating core and the compressible surrounding
metal, thus enabling a more precise characterization of
the Mott transition, even at intermediate values of the
coupling strength, where magnetic correlations are pre-
dicted to be strongest [13–15].

The Hubbard Hamiltonian is given by

Ĥ = −t
∑
〈ij〉,σ

(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓ − µ
∑
i,σ

n̂iσ.

(1)
Here, the indices i, j denote lattice sites, the spin states
are labeled as σ = ↑ or ↓ , the angled brackets indi-
cate summation over nearest-neighbors, t is the nearest-
neighbor tunneling matrix element, U (> 0) is the on-site

interaction energy, µ is the chemical potential, ĉ†iσ (ĉiσ)
is the creation (annihilation) operator for a fermion with

spin σ at site i, and n̂iσ = ĉ†iσ ĉiσ is the density operator.
For µ = U/2, the average density of the system is n = 1

particle per lattice site (half-filling). At half-filling, as the
temperature T is reduced, or as U is increased, such that
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T � U , the system undergoes a smooth crossover to a
Mott insulating regime, characterized by a suppression of
the number of doubly occupied sites and a suppression
of density fluctuations, which implies a reduction of the
compressibility [16]. If T is reduced below the Néel tem-
perature TN (∼4t2/U for U � t), the system undergoes
a phase transition to an antiferromagnetic (AFM) state.

Cooling and thermometry have been the greatest chal-
lenges for realizing the Hubbard model with ultracold
atoms in optical lattices [17]. Even though the tem-
peratures required for pairing and superfluidity in the
doped Hubbard model [18] have not yet been reached, the
past few years have seen steady experimental progress.
This includes the observation of Fermi surfaces in a band
insulator [19], the observation of the Mott insulating
regime for strong couplings (U/t ≥ 18) [4, 6, 7] and,
more recently, the detection of AFM spin correlations in
1D chains [20, 21] and in a 3D lattice [22].

A vanishing local compressibility characterizes the
Mott regime in the Hubbard model. It can also be a
useful observable to characterize other phases and models
realized with ultracold atoms. For example, kinks in the
local compressibility can indicate phase boundaries in the
trapped system [23]. The isothermal compressibility of a
gas is defined as

κ =
1

n2
∂n

∂µ
. (2)

For atoms in a 3D lattice we consider the unitless quan-
tity (t/a3)κ, where a is the lattice spacing. In the limit

of zero lattice depth, t → − a
2π

∫ π/a
−π/a

~2q2

2m exp[iqa] dq =

(2/π2)Er, where q is the quasimomentum, Er = ~2π2

2ma2 is
the recoil energy, and m is the mass of the particles. For
a free Fermi gas with no interactions, the compressibility
at zero temperature is given by κ0 = 3

2nEF
, where EF is

the Fermi energy for each spin component. In this paper
we consider the normalized compressibility κ̃, defined as

κ̃ ≡ (t/a3)κ

((2π2/Er)/a3)κ0
=

(3π2)2/3

2

∂ñ2/3

∂(µ/t)
, (3)

where ñ = a3n.
We start by presenting theoretical results for κ̃, which

underlie the interpretation of our experimental results.
In Fig. 1 we show theoretical results for κ̃ at various
values of T/t and U/t, obtained using determinantal
quantum Monte Carlo (DQMC) [24, 25] and a numer-
ical linked-cluster expansion (NLCE) [26–28] up to the
eighth order in the site expansion. These two methods
complement each other, and provide results over a wide
range of interactions and temperatures. While NLCE can
reach lower temperatures than DQMC at large U/t, the
opposite is true at weak coupling. Figure 1 shows that
the theoretical compressibility diminishes at half-filling
and larger U/t as the system enters the Mott insulating
regime, and at ñ = 2, where a band insulator forms.

FIG. 1. (color online) Normalized compressibility versus
density for the homogeneous 3D Hubbard model, shown for
various interaction strengths and temperatures. The differ-
ent curves were obtained using DQMC (closed symbols) and
NLCE (open symbols). At half-filling, ñ = 1, the compress-
ibility vanishes for strong interactions and low temperatures
as the system enters the Mott insulating regime.

In addition, Fig. 1 demonstrates that at a temperature
T ≤ t, locally resolving the compressibility enables one
to observe the Mott regime for coupling strengths as low
as U/t ∼ 8, in the vicinity of the interaction strength
that maximizes TN [13–15], rather than requiring larger
couplings [4, 6, 7].

In our experiment, we produce a two-spin component
degenerate Fermi gas of 6Li atoms in the |F = 1/2;mF =
+1/2〉 and |F = 1/2;mF = −1/2〉 hyperfine states,
which we label |↑〉 and |↓〉, respectively. The apparatus
has been described previously [22, 29]. Briefly, the spin
mixture is evaporated into a harmonic dimple trap and
then loaded into a simple cubic optical lattice. We control
the total number of atoms, N , by adjusting the final
depth of the dimple trap. The temperature of the atoms
in the dimple is measured by fitting the density distribu-
tion after time of flight. We obtain T/TF = 0.04± 0.02,
independent of N within the range of atom numbers
considered for this paper.

The optical lattice is formed by three retroreflected
red-detuned (1064 nm) Gaussian laser beams of depth
V0 = 7Er. The lattice depth is calibrated via lattice
phase modulation spectroscopy, up to a systematic un-
certainty of ±5%. Due to the Gaussian beam profiles,
the lattice depth decreases with distance from the cen-
ter, which results in increasing t and decreasing U/t.
The lattice depth varies along the 111 body diagonals
as V (r) = V0 exp[−4r2/(3w2

L)], where V0 is the lattice
depth at the center, r is the distance from the center,
and wL is the waist (1/e2 radius) of the lattice beams.
We make use of the broad Feshbach resonance in 6Li at
832 G [30, 31] to set the on-site interaction strength, U .

The lattice confinement is compensated by the addi-
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FIG. 2. (color online) (a) Azimuthally averaged column
density (including both spin states) vs. distance from the
imaging axis ρ, for different values of U0/t0. Data points
represent the average of eight individual realizations, with
error bars corresponding to the standard deviation. The lines
in (a) are obtained by integrating the density (calculated for
N = 2×105 atoms at T/t0 = 0.6) along the imaging axis. (b)
Data points correspond to density profiles extracted from the
column densities using the inverse Abel transform, where r is
the distance from the center of the trap. The lines in (b) show
the density calculated for our trap along a body diagonal of
the lattice.

tion of three blue-detuned (532 nm) Gaussian beams,
which overlap each of the lattice beams but are not them-
selves retroreflected [22, 32]. The overall confinement in
the lattice, which sets the density of the cloud, is adjusted
by changing the intensity of the compensation beams.
We create samples which appear spherically symmetric
with slight adjustment of the intensity of the three in-
dependent compensation beams. The average value of
the compensation depth is set at 3.8Er, with a system-
atic ±10% relative error resulting from the calibration of
wL and the compensation beam waists, wC . The beam
waists along each axis are calibrated by measuring the
frequency of radial breathing mode oscillations [28]. We
find, up to a ±5% systematic uncertainty, the lattice
beam waists to be wL = (47; 47; 44) µm and the com-
pensation beam waists to be wC = (42; 41; 40) µm.

We measure the in-situ column density distribution of
the atoms using polarization phase-contrast imaging [34].
This technique can be used to image dense clouds, in
contrast to absorption imaging which is limited to small
optical densities due to saturation. The imaging light
was detuned by -150 MHz from state |↑〉 (-74 MHz from
|↓〉), keeping the phase shift across the cloud below π/5
to avoid significant dispersive distortions of the image.

Figure 2 shows azimuthal averages of the column den-
sity and density profiles; the latter are obtained from the
former using the inverse Abel transform (which assumes
spherical symmetry) [35, 36]. Profiles for three different
values of U0/t0 (where U0 and t0 denote the values of the
Hubbard parameters at the center of the trap) are shown,
along with profiles calculated for our trap potential.

For the numerical calculations, we set T and the global
chemical potential, µ0, while the local values of U/t,
T/t, and µ/t are calculated using the known trap po-

FIG. 3. (color online) Central density, ñ0 vs. atom number for
various interaction strengths. The symbols show the average
for a set of 5 to 10 independent realizations, with error bars
indicating the standard deviation. The shaded regions are the
results of numerical calculations for our trap at T/t0 = 0.6
(solid, green) and 2.4 (crosshatched, gray), with the width of
each region corresponding to a ±14% systematic uncertainty
in the value of U0/t0, arising from the ±5% uncertainty in V0.
The red line is calculated at T/t0 = 1.0, without considering
the trap systematics. The calculated density becomes rela-
tively insensitive to uncertainties in U0/t0 for the two larger
values of U0/t0, which are deep in the Mott regime. For
T/t0 = 0.6 the total entropy per particle, S/(NkB), is between
0.5 and 1.0 for the ranges of N and U0/t0 shown in the figure.
A temperature of T/t0 = 2.4 is chosen for comparison, as in
this case S/(NkB) is between 1.5 and 2.4, which is similar to
the range between 1.6 and 2.2 reported from the analysis of
a previous experiment [37].

tential. Local values of the density are obtained, within
the LDA, by interpolation of NLCE and DQMC results
for a homogeneous system calculated in a (U/t, T/t, µ/t)
grid. Because T/t diminishes with r, the lowest value
of T/t0 that can be calculated for the trap is limited to
T/t0 = 0.6.

The response of the central density of the cloud, ñ0,
to changes in atom number, is a measure of the local
compressibility at the center of the trap. We obtain ñ0
by fitting the measured column density with the integral,∫
ñ(ρ, z) dz, of a flat-topped Gaussian function

ñ(ρ, z) =


ñ0 if ρ2 + z2 < r20

ñ0 exp
[
r20−ρ

2−z2
σ2

]
otherwise

, (4)

where ρ is the distance from the imaging axis, and the fit
parameters are ñ0, the flat-top radius, r0, and the Gaus-
sian 1/e radius of the cloud’s wings, σ. In Fig. 3 we show
ñ0 vs. N for various values of the interaction strength
U0/t0. The appearance of a plateau in ñ0 around 1
is characteristic of the Mott insulating regime. The
persistence of a Mott plateau at intermediate coupling,
U0/t0 = 11.1, indicates that the temperature is at or
below the tunneling energy, as shown by comparison with
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FIG. 4. (color online) Normalized local compressibility, κ̃ ver-
sus density for different values of U0/t0. Closed symbols show
the average of eight individual realizations with error bars
indicating the standard deviation. The shaded regions are
numerical calculations at T/t0 = 0.6 (solid, green) and T/t0 =
2.4 (crosshatched, gray) for N = 2 × 105, where the width of
the region reflects a ±14% systematic uncertainty in U0/t0.
The red line is calculated at T/t0 = 1.0, without considering
the trap systematics. With N = 2 × 105, the total entropy
per particle at T/t0 = 0.6 is approximately S/(NkB) = 0.58,
0.76, and 0.82 for U0/t0 = 3.1, 11.1, and 14.5, respectively;
at T/t0 = 2.4 it is approximately S/(NkB) = 1.59, 1.70, and
1.66, respectively.

the numerical results. A precise temperature determina-
tion is prevented by the fact that the density and other
observables related to the charge degrees of freedom, are
relatively insensitive to temperature for T < t.

The local compressibility, κ̃, is obtained by taking a
derivative of the measured and calculated density profiles
as

κ̃ =
(3π2)2/3

2

∂ñ2/3

∂r

(
∂(µ/t)

∂r

)−1
, (5)

where the spatial derivative of the local chemical poten-
tial depends only on the trap parameters. For the data,
the azimuthal average of the column density, and the
inverse Abel transform are noisy at small radii, so, to
avoid excessive noise in the determination of the radial
derivative of ñ2/3, we restrict our analysis to r/a > 12.
Figure 4 shows κ̃ vs ñ for the experimental data and for
density profiles calculated at different temperatures. A
decrease of the compressibility near ñ ≈ 1, as expected
for a Mott insulator, is observed for U0/t0 = 11.1 and
14.5. As with the central density, the weak sensitivity
of κ̃ to T at lower temperatures prevents us from mak-
ing a precise temperature measurement. However, the
comparison of the data with the numerical calculations
at T/t0 = 0.6, in both Figs. 3 and 4, reveals that the
results are consistent with our previous measurement
in the same system, where using spin-sensitive Bragg
scattering of light, we determined the temperature to be
T/t0 = 0.58± 0.07 [22, 38, 39].

We have shown that the local compressibility of a
two-component Fermi gas in an optical lattice may be
extracted from in-situ measurements of the column den-

sity. The data presented here shows evidence of Mott-
insulating behavior for interaction strengths as low as
U0/t0 = 11, close to where TN is expected to be max-
imal, and where AFM correlations were observed to be
maximal for this system [22]. A key achievement of this
work is the combination of experiment with two compli-
mentary theoretical approaches which span the full range
of U/t and ñ required to model the trapped atom data.
As described in the supplemental material [33], the use
of DQMC and NLCE in tandem provides reliable results
over a range of temperatures and interaction strengths
beyond those available previously. [41–43]

Measurements of local compressibility in an optical lat-
tice, along with recently developed methods for detecting
magnetic order, can improve our understanding of the
onset of Mott insulating behavior in the Hubbard model,
and answer open questions about its proximity to the
AFM phase in different coupling regimes. In addition,
the local compressibility can have important implications
for understanding the nature and extent of the non-
Fermi liquid state of the 2D Hubbard model away from
half-filling [44–46] at relatively high temperatures [47].
Finally, as has been recently shown [48, 49], sharp signa-
tures of phase separation and stripe formation are evident
in the compressibility, raising the possibility that this
central property of cuprate superconductors, and of the
Hubbard model, might be accessible to this diagnostic.
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