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We investigate a spin-orbit coupled Bose-Einstein condensate loaded into a translating optical
lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit coupled
system, which leads to anisotropic behavior of the condensate depending on the direction of transla-
tion of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We
experimentally confirm this theoretical picture by probing the dynamical instability of the system.
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Spin-orbit coupling (SOC), the interaction between a
particle’s spin and its mechanical motion, plays a promi-
nent role in condensed matter physics [1]. Even though
the spin-orbit interaction is usually relatively weak, it
can be important for bands close to the Fermi level [2].
The combination of spin-orbit coupling with a periodic
potential resulted in the prediction and discovery of topo-
logical insulators [3, 4], which have become a significant
focus of recent research [5, 6]. Such spin-orbit coupled
lattice systems, with the addition of strongly correlated
many-body effects, afford the possibility of studying new
phase transitions and realizing exotic spin models [7, 8].
In cold atomic gases, spin-orbit coupling can be im-

plemented by Raman coupling of atomic hyperfine states
[9–14]. The tunability of the Raman coupling param-
eters results in a flexible experimental platform to ex-
plore spin-orbit coupled physics [15–18]. The spin-orbit
coupling can strongly modify the single-particle disper-
sion relation of a quantum gas. The resulting novel band
structures [9, 19] give rise to many interesting phenomena
due to the competition between spin-orbit coupling and
atomic interactions (for recent reviews see, e.g., [20, 21]).
In this Letter we perform a detailed study of a

Bose-Einstein condensate (BEC) with spin-orbit coupling
loaded into a shallow one-dimensional optical lattice.
The effects of a stationary lattice can be understood by

repeatedly displacing the single-particle SOC spectrum
along the momentum axis by integer multiples of the re-
ciprocal lattice vector. Where lines of displaced spectra
cross, gaps open up. The resulting Bloch spectrum shows
interesting features. For example, in a certain parameter
regime, the lowest Bloch band can be flat [22]. If the
lattice moves, the Bloch spectrum becomes complicated
due to the lack of Galilean invariance in the presence
of the spin-orbit coupling [23]. We develop an effective
dispersion relation to depict the joint effect of spin-orbit
coupling and the translating lattice. The breaking of
Galilean invariance is naturally incorporated in the effec-
tive dispersion by its asymmetry with respect to different
directions of motion.
The effective dispersion is probed experimentally by

the observation of the dynamical instability of the con-

densate. The weak repulsive atomic interactions not only
move the single-particle effective dispersion slightly up-
ward [24], but also cause dynamical instability of certain
Bloch states. A homogenous single component BEC with
repulsive interactions is always dynamically stable. How-
ever, when loaded into an optical lattice, the BEC fea-
tures dynamical instabilities when the speed of the trans-
lating lattice is larger than a critical value [25–28]. The
instabilities are characterized by an initial exponential
growth of excitations in the BEC, heating, and ultimately
loss of atoms from the BEC. They are most significant in
the vicinity of a band gap, which provides a mechanism
to probe the band gap structure in an experiment. In
our spin-orbit coupled lattice BEC, we characterize the
strengths of the instabilities by the loss rate of conden-
sate atoms and find that the strengths depend on both
the lattice speed and direction of motion. The regimes
with most significant instability are used to identify band
gaps present in the effective dispersion. The directional
dependence of the instabilities corroborates the asymme-
try of the effective dispersion. Our experiments provide
a direct observation of the lack of Galilean invariance in
the spin-orbit coupled systems [23, 29]. We compare our
results with a Bogoliubov analysis and find good agree-
ment.

We begin by providing a brief description of our ex-
perimental system. Spin-orbit coupling in BECs can
be induced by Raman dressing schemes [9–14], and the
geometry of our experiment is shown schematically in
Fig. 1(a). The Raman lasers couple the |1,−1〉 = |↓〉 and
|1, 0〉 = |↑〉 states of a 87Rb BEC in the F=1 hyperfine
manifold. A 10 G bias magnetic field causes a sufficiently
large quadratic Zeeman splitting such that the |1,+1〉
state is far from resonance. Hence the system realizes an
effective spin-1/2 system [30]. The system without the
one-dimensional lattice is modeled by the single-particle

Hamiltonian HSOC =
~
2k2

z

2m
+ γpzσz + ~δ

2
σz + ~Ω

2
σx [9].

Here m is the atomic mass, ~kz is the quasimomentum
in the spin-orbit direction and {σi} are the Pauli matri-
ces. The spin-orbit coupling strength is γ = ~kRam/m,
where kRam is the wavevector of the Raman beams pro-
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FIG. 1. (Color online) Spin-orbit coupled 87Rb BEC in a
one-dimensional optical lattice. (a) Experimental geometry.
The BEC (yellow hashed) is confined in an optical dipole trap
(solid green). Two sets of laser beams intersect the BEC at
a 45◦ angle, generating the spin-orbit coupling (white arrow)
and a translating optical lattice (striped arrows). (b) Raman
coupling scheme in the F=1 manifold of 87Rb with detun-
ing δ. (c) Typical band structure E±(kz) of HSOC with the
color (grey scale) indicating the spin-polarization, defined as
the relative population difference of the bare spin components
(|ψ↑|

2 − |ψ↓|
2)/(|ψ↑|

2 + |ψ↓|
2). The BEC is prepared at the

minimum of the lower band (circle). The arrows indicate
a possible two photon coupling due to the lattice translat-
ing with negative (dashed) or positive (solid) velocity. (d)
Bloch spectrum of a stationary optical lattice in the presence
of spin-orbit coupling. The lines correspond to E±(kz) and
E±(kz +2nklat), where n is an integer. The spin composition
is encoded in the line color (grey scale). The parameters used
for (c) and (d) are ~δ = 1.6 ERam, ~Ω = 2 ERam with the
additional parameters U0 = −1.4Elat and v = 0 for (d).

jected onto the z-direction, kRam = 2π/(λRam

√
2) with

λRam ≈ 789nm. δ is the detuning and Ω is the Rabi
frequency. A typical band structure for our parame-
ters is shown in Fig. 1(c), where the band energies are

E±(kz) =
~
2k2

z

2m
± ~

√

(γkz +
δ
2
)2 + Ω2

4
.

Two additional laser beams with λlat ≈ 1540 nm and
small frequency difference ∆ν generate the translating
optical lattice. The lattice beams are collinear with the
Raman lasers such that klat = 2π/(λlat

√
2). The single-

particle Hamiltonian of the spin-orbit coupled lattice sys-
tem is Hsp = HSOC + U0 sin

2[klat(z − vt)]. The lattice
velocity v = π∆ν/klat can be adjusted by varying the

FIG. 2. (Color online) Effective band structure as a function
of the lattice velocity. The thick green lines indicate the po-
sition at which the BEC is placed in the experiments. (a)
BEC with spin-orbit coupling and ~δ = 1.6ERam as shown in
Fig. 3(b). (b) BEC without spin-orbit coupling as in Fig. 4.
The numbers in the graphs indicate the order of the associ-
ated multi-photon resonances.

frequency difference ∆ν between the two lattice beams.
For the experiments presented in this manuscript, U0 =
−1.4Elat, where Elat = ~

2k2lat/2m. The presence of the
optical lattice extends the spin-orbit coupled bands in
Fig. 1(c) to the Bloch spectrum in Fig. 1(d). In the re-
peated zone scheme the Bloch spectrum is constructed
through copies of the spin-orbit bands shifted by inte-
gers of the reciprocal lattice vector 2n~klat in quasimo-
mentum and 2n~klatv in energy, where n = 0,±1,±2, . . ..
Gaps open in the Bloch spectrum wherever intersections
between E±(kz) and E±(kz + 2nklat) − 2n~klatv occur.
The width of the gap depends on the lattice depth U0

and on the overlap between the spin composition of the
states coupled by the lattice beams. Typically the gap
corresponding to |n| is larger than that corresponding to
|n|+1. This is evident in Fig. 1(d), where the energy gaps
are largest for |n| = 1 in both the lower as well as the
upper dressed bands. Physically, the band gaps can be
understood from multi-photon resonances in which the
momentum of the atoms can be changed coherently by
multiples of the reciprocal lattice vector 2n~klat.

Before describing the experimental results, it is in-
structive to introduce an effective band structure pic-
ture. As the translating optical lattice potential is
time dependent in the lab frame, it is convenient to go
into the frame in which the optical lattice is stationary.

This results in the Hamiltonian HM
sp =

p2

z

2m
+ γpzσz +

~δ
2
σz + U0 sin

2(klatz)− vpz. With a simple substitution,

P = pz − mv, one obtains H̄M
sp = P 2

2m
+ γPσz + (δ +

2mγv/~)~
2
σz +

~Ω
2
σx +U0 sin

2(klatz) (where we have left
out a constant energy term mv2/2). In addition to the
lattice potential, H̄M

sp is non-trivially different fromHSOC

due to the term δ + 2mγv/~, which can be interpreted
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FIG. 3. (Color online) Dynamical instability of the spin-orbit coupled BEC as a function of lattice speed with (a–d) ~δ/ERam =
{3.2, 1.6, 0.8, 0.4} respectively. The strength of the dynamical instability is measured experimentally by the loss rate of atoms
in the BEC (upper panels), while theoretically it is represented by the largest growth rate of Bogoliubov excitations (lower
panels). Each resonance (vertical line) is labeled with the number of photons generating the band edge, with underlined integers
denoting resonances between the upper and lower spin-orbit bands. The solid red triangles (open blue circles) indicate the
positive (negative) direction of the lattice motion.

as an effective detuning of the Raman beams. This term
depends on the frame velocity v and signifies the broken
Galilean invariance of the spin-orbit coupled BEC. Phys-
ically this arises because the Raman lasers generating the
spin-orbit coupling provide a fixed frame of reference.

In our experiments we observe the behavior of the BEC
by varying the lattice velocity. An effective dispersion
relation should thus be calculated as a function of the
lattice velocity v. The BEC is initially assumed to be in
the ground state of the spin-orbit coupled band E−(kz)
of HSOC with a finite quasimomentum, kmin, which is
approximately conserved when the optical lattice is in-
troduced [31]. Therefore, during the experiment, the
quasimomentum kmin is fixed. The effective dispersion,
EM (kmin, v), can be taken from the Bloch spectrum of
HM

sp at kmin. The results are shown in Fig. 2(a) for
~δ = 1.6 ERam, ~Ω = 2 ERam, and U0 = −1.4Elat, where
ERam = (~kRam)

2/2m. An obvious feature of the effec-
tive dispersion relation is its asymmetry with respect to
a sign change of the lattice velocity. The physical origin

of this asymmetry is the breaking of Galilean invariance.

From the effective dispersion, we can trace the location
of the BEC if the lattice velocity varies. When the spin-
orbit coupled BEC is adiabatically loaded into the trans-
lating lattice, it occupies a state near the lower spin-orbit
coupled band EM

− (kmin, v) (thick green line in Fig. 2(a)).
We label the avoided crossings along the trace by in-
tegers 2n that indicate the photon processes involved,
EM

− (kmin, v) = EM
− (kmin ± 2nklat, v). Resonances oc-

curring between the lower and upper spin-orbit bands
[EM

− (kmin, v) = EM
+ (kmin ± 2nklat, v)] are denoted by an

underlined number 2n. It is interesting to note that the
ordering of the band edges is not straightforward, and the
positions of the band edges are not equally spaced. The
exact ordering and positions strongly depend on the cho-
sen parameters δ, Ω, and the ratio klat/kRam. For com-
parison, Fig. 2(b) presents the analogous band structure
for a BEC in a translating lattice but without spin-orbit
coupling. As is well known in this case, the effective
band structure and the BEC location (thick green line)
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FIG. 4. Dynamical instability of the BEC without spin-orbit
coupling as a function of lattice velocity. The strength of the
dynamical instability is measured experimentally by the loss
rate of atoms in the BEC (upper panels), while theoretically
it is represented by the largest growth rate of any Bogoliubov
excitation (lower panels). Each resonance (vertical line) is
labeled with the number of photons generating the band edge.

are symmetric with respect to the direction of motion,
the band edges are equally spaced, and the effective dis-
persion relation recovers the Bloch spectrum.

The avoided crossings of the effective dispersion are
experimentally probed by the observation of dynamical
instability of the BEC. We measure the loss spectra for
the system as a function of the velocity of the optical
lattice. Our experiments begin with a nearly pure 87Rb
BEC in the ground state in the presence of spin-orbit cou-
pling with ~Ω = 2 ERam before ramping up a translating
optical lattice to a lattice depth of U0 = −1.4Elat [30].
We hold the BEC in the lattice potential for 100 ms,
during which excitations caused by instabilities can grow
and population is lost from the BEC. The experimental
results for the loss rate as a function of the lattice veloc-
ity, for four different values of the Raman detuning δ, are
plotted in the upper panels of Fig. 3(a–d). In the absence
of Galilean invariance, we must differentiate between the
two translating directions for the optical lattice. In Fig. 3
we plot negative (positive) velocities in dashed open blue
circles (solid red triangles), corresponding to the dashed
(solid) arrows in Fig. 1(c). With this convention a lat-
tice translating in the positive direction couples to states
that resemble free particles, while a lattice translating in
the negative direction couples to states that are strongly
modified by the spin-orbit coupling. For comparison, we
have also performed these measurements without spin-
orbit coupling (see Fig. 4) and for this case find agree-
ment with prior experimental work [27].

We model our experiment using the Bogoliubov-de
Gennes (BdG) equations based on a one-dimensional
mean-field description of a homogeneous BEC [30]. We
identify the quasi-particle mode with the largest imag-

inary part of the energy, corresponding to the largest
initial growth rate, and plot this rate as a function of ve-
locity in the lower panels of Fig. 3(a–d). The theoretical
results provide a good understanding of the experimen-
tal measurements [30]. While the theoretically calculated
growth rates are different quantities than the experimen-
tal loss rates presented in the upper panels of Fig. 3, they
have previously been found to be a reasonable indication
of the strength of dynamical instability [27]. Both the ex-
perimental data and the numerical results demonstrate
that the critical speed for the onset of the dynamical in-
stability is different for the two directions of motions.
This is particularly evident in the experimental and nu-
merical results for the smaller detunings of ~δ = 0.8 ERam

and ~δ = 0.4 ERam in Fig. 3(c,d) near v = ±0.5 mm/s,
where the critical velocity is smaller for the negative di-
rection. Above the critical velocity the dynamical insta-
bility is most significant in the vicinity of the band edges.
Loss occurs in all higher bands as well, but the loss rate
in higher bands is significantly reduced.

The dynamical stability of the BEC is also quite dif-
ferent for the two directions of motion. In Fig. 3(a–d)
the behavior of the loss and growth rates for the positive
direction of motion (red solid triangles) is very similar
to that of the case without spin-orbit coupling shown in
Fig. 4. However, in the negative direction of motion (blue
open circles) the behavior is strongly modified. For ex-
ample in Fig. 3(a) for ~δ = 3.2 ERam, a pronounced addi-
tional loss feature appears centered around v = 9 mm/s,
shifting to smaller velocities for smaller δ in Fig. 3(b–
d). This feature is caused by the two photon resonance
2 between EM

− (kmin, v) and EM
+ (kmin − 2klat, v) (i.e. the

lattice resonance between the lower and upper spin-orbit
bands). For comparison, the large loss feature near v = 2
mm/s is due to the 2 photon resonance within the lowest
spin-orbit band. Even though both of these loss features
arise from two photon couplings, the 2 feature is weaker.
This is in part due to the reduced overlap of the spin com-
position between EM

− (kmin, v) and EM
+ (kmin − 2klat, v).

For the positive direction of motion of the lattice in
Fig. 3(a–d) the 2 resonance between EM

− (kmin, v) and
EM

+ (kmin + 2klat, v) occurring at large velocity is sup-
pressed by the small overlap in spin composition for our
chosen parameters. For example, with ~δ = 1.6 ERam,
such a resonance occurs at v = 21.6 mm/s but the mod-
ification to the Bloch spectrum is negligible. Another
loss feature near v = 4.5 mm/s in Fig. 3(a) in the posi-
tive direction corresponds to the 4 photon resonance, and
is shifted to smaller velocities in the negative direction.
In the experimental results for the negative direction it
cannot be differentiated from the dominant 2 band edge,
and is diminished due to the smaller overlap of the spin
compositions.

In conclusion, we have studied the rich dispersion rela-
tion of a spin-orbit coupled BEC in a weak optical lattice
by probing the losses of the system as a function of lattice
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velocity. Our experiment provides a direct observation
of the breaking of Galilean invariance in the presence of
spin-orbit coupling. Our spin-orbit coupled lattice BEC
affords an important platform to experimentally investi-
gate the effect of spin-orbit coupling for the superfluid-
to-Mott insulator transition and the magnetic physics in
spin-orbit coupled Mott insulators phases [32–34].
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