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Comment on “Universality of Returning Electron

Wave Packet in High-Order Harmonic Genera-

tion with Midinfrared Laser Pulses”

In Ref. [1], Le et al. establish in the long wavelength
limit a universal shape for the returning electron wave
packet in high-order harmonic generation (HHG) as a
function of the returning electron’s energy. Based on
this approach, Le et al. suggest a universal wavelength
scaling law, ∝ λ−4.2, for the HHG yield for laser wave-
lengths in the range 3µm ≤ λ ≤ 6µm. This scaling
law differs from the faster decrease of the HHG yield
with increasing λ, ∝ λ−(5−6), predicted earlier [2–5]. Le
et al. attribute this difference to the limited interval of
wavelengths (λ 6 2µm) used to solve the time-dependent
Schrödinger equation (TDSE) in Refs. [2, 3, 5]. Since the
HHG yield is a fundamental quantity for practical ap-
plications, any new scaling law for λ & 3µm must be
clearly justified owing to its importance for planning ex-
periments involving the generation of XUV radiation by
means of HHG using long-wavelength lasers.
The apparent disagreement stems from the use in

Ref. [1] of a different definition of the harmonic yield ∆Y

from that used in Refs. [2–5]. As noted in Ref. [5], the
λ-scaling law depends on the precise definition of ∆Y. In
Ref. [2], the authors study “the scaling of an average har-
monic yield, obtained by integrating the power spectrum
over a fixed bandwidth.” (They integrate the HHG power
spectrum over harmonic energy intervals of 40–80 eV for
He and 20–50 eV for Ar.) In Ref. [4] the definition of har-
monic yield from Ref. [2] was adopted for a monochro-
matic field, defining the yield ∆Y in terms of the HHG
power. For a short pulse laser field, in Refs. [3, 5] a defini-
tion of the HHG yield compatible with that in Ref. [2] is
used, i.e., ∆Y is defined as the energy radiated per unit
time by the target atom (subjected to a laser pulse of
duration T ) into a fixed harmonic energy range [Ω1,Ω2],

∆Y =
1

T

∫ Ω2

Ω1

ρ(Ω)dΩ, (1)

where ρ(Ω) is the spectral density of harmonics with en-
ergy Ω. [Although Ref. [3] properly defines the HHG
yield in words, the factor 1/T was inadvertently omit-
ted in Eq. (2) of Ref. [3]; this omission was corrected
in Eq. (3) of Ref. [5].] Since the laser pulse has a fixed
number N of optical cycles, T scales linearly with λ. In-
serting the recolliding wave packet results of Ref. [1] into
Eq. (1), the scaling ∆Y ∝ λ−5.2 found in Refs. [2–5] is

confirmed.
In conclusion, we have shown that when the same def-

inition for the HHG yield is used [cf. Eq. (1)], the re-
sults of Ref. [1] give the same scaling law found earlier
in Refs. [2–5] for wavelengths λ ≤ 2µm. We note that
this latter scaling law can be obtained analytically using
results of the model developed in Ref. [6] for the descrip-
tion of short-pulse HHG spectra. These analytic results
as well as new numerical TDSE results for longer wave-
lengths, λ ≤ 4µm, will be published elsewhere.
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