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We analyze the temperature and doping dependence of the specific heat C(T ) in NaxCoO2. This
material was conjectured to undergo a Lifshitz -type topological transition at x = xc = 0.62, in
which a new electron Fermi pocket emerges at the Γ point, in addition to the existing hole pocket
with large kF . The data show that near x = xc, the temperature dependence of C(T )/T at low T
gets stronger as x approaches xc from below and then reverses the trend and changes sign at x ≥ xc.
We argue that this behavior can be quantitatively explained within the spin-fluctuation theory. We
show that magnetic fluctuations are enhanced near xc at momenta around kF and their dynamics
changes between x ≤ xc and x > xc, when the new pocket forms. We demonstrate that this explains
the temperature dependence of C(T )/T . We show that at larger x (x > 0.65) the system enters a
magnetic quantum critical regime where C(T )/T roughly scales as log T . This behavior extends to
progressively lower T as x increases towards a magnetic instability at x ≈ 0.75.

Introduction The layered cobaltates NaxCoO2

have been the subject of intense studies in recent
years due to their very rich phase diagram and asso-
ciated rich physics [1–7]. Their structure is similar
to that of copper oxides and consists of alternatively
stacked layers of CoO2 separated by sodium ions.
The Co atoms form a triangular lattice [8]. The
hydrated compound NaxCoO2:yH2O with x ∼ 0.3
shows superconductivity [9], most likely of electronic
origin. The anhydrated parent compound NaxCoO2

exhibits low resistivity and thermal conductivity and
high thermopower [1, 2] for 0.5 < x < 0.9 and mag-
netic order for 0.75 < x < 0.9 (Refs.6, 7, 10, 11).
In the paramagnetic phase NaxCoO2 shows a con-
ventional metallic behavior at x ≤ 0.6 and at larger
x displays strong temperature dependence of both
spin susceptibility and specific heat down to very
low T . This change of behavior has been at-
tributed [12] to a putative Lifshitz-type topological
transition [13] (LTT) at xc ≈ 0.62, in which a small
three-dimensional (3D) electron Fermi pocket ap-
pears around k = 0, in addition to the already exist-
ing quasi-2D hole pocket with large kF1 (Ref.14), see
Fig. 1. Although the small pocket has not yet been
observed directly, ARPES measurements at smaller
x did find a local minimum in the quasiparticle dis-
persion at the Γ point [15]. Similar topological tran-
sitions have been either observed or proposed for
several solid state [16–23] and cold atom systems
[24], and the understanding of the role played by
the interactions near the LTT transition is of rather
general interest to condensed matter and cold atoms
communities.

The subject of this paper is the analysis of the
interaction contributions to the specific heat C(T )
in NaxCoO2 at around the critical xc for LTT. The
experimental data [12], show (see Figs. 3 and 4)
that for doping near xc, the temperature dependence
of C(T )/T is more complex than the C(T )/T =

FIG. 1: The lattice fermionic dispersion ε(k) at kx =
0 (in units of t1 ≈ 0.1eV ). See [25] for the values of
the other hopping integrals. Note that the dispersion is
approximately rotationally invariant in the kx−ky plane
and is quite shallow: the depth of the local minimum is
around 20 meV.

γ1 + γ3T
2 + O(T 4) expected in an ordinary Fermi

liquid (FL). The FL behavior itself is not broken in
the sense that γ1 remains finite. However the T de-
pendence at x = xc is stronger than T 2, as evidenced
by the fact that the fits of the data on C(T )/T to
γ1+γ3T

2 behavior [12] in finite intervals around dif-
ferent T yield larger γ3 as T goes down (see Ref.36).
This does not allow one to interpret γ1 directly as a
density of states, and the full computation is needed
to compare the data with the theory. For doping lev-
els 0.65 < x < 0.75 the data show [3] that, to a good
approximation, C(T )/T ∝ log T in a wide range of
temperatures T ∼ 1 – 10 K, see Fig. 4a. This loga-
rithmic temperature dependence progressively spans
over larger temperature range as x approaches 0.75,
where a magnetic order develops (Refs.[6, 7, 10, 11]).

Some qualitative features of the experimental data
of C(T ) at x ∼ xc are reproduced by the free-
fermion formula for specific heat, with the quasi-
particle dispersion taken from first-principle calcu-
lations (Fig. 2a). In particular, γ1 increases and
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FIG. 2: Theoretical results for the specific heat C(T )/T for for several Na dopings x for free fermions (a) and for
fermions with magnetically-mediated interaction with ξ = 7a0 (b). Both are obtained without expanding in T , using
the dispersion from Fig.1.
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FIG. 3: (a) The data [12] for C(T )/T for x = 0.59 to 0.72 with the doping-independent phonon contribution
subtracted. (b,c) The fits of experimental and theoretical C(T )/T to C(T )/T = γ1 + γ3T

2 for T 2 between 50K2 and
100K2.

γ3 passes through a maximum around x = 0.62, see
Fig. 3b,c . However, the magnitudes of γ1 and γ3
are much smaller than in the data and the maxi-
mum in γ3 is too shallow. A strong temperature
dependence of C(T )/T may potentially come from
phonons, but γ3 due to phonons is highly unlikely
to become singular at x = xc. This implies that
the observed features of C(T ) are most likely caused
by electron-electron interactions. Interactions with
a small momentum transfer q give rise to linear in T
dependence of C(T )/T in 2D due to non-analyticity
associated with the Landau damping [26]. That a
linear in T term has not been observed in NaxCoO2

near xc implies that small-q fluctuations are weak
near this doping[27]. Interactions with a finite mo-
mentum transfer q ≈ kF1 are expected to be strong
and sensitive to the opening of a new piece of elec-
tron FS as the static fermionic polarization opera-
tor Π(kF1) gets enhanced as x approaches xc. An
enhancement of Π(kF1) generally implies that spin
fluctuations at kF1 get softer and mediate fermion-
fermion interaction at low energies [27].

The spin-fluctuation contribution to γ3 has been
analyzed before for systems with a single 3D FS[31].
In this situation, the sign of γ3 is negative. This
negative sign can be traced back [31] to positive sign
of the prefactor for the ω2 term in the dynamical
spin susceptibility χ(q, ω). The latter behaves at
small frequencies and at momenta q < 2kF , which
connects points on the FS, as χ−1(q, ω) ∝ ξ−2 +
bω2 − iγω with b ∝ 1/q2 > 0. We show that in our
case relevant momenta are around kF1

and situation

with b > 0 holds for x > xc, when a small 3D pocket
emerges and kF1

connects fermions at the two FSs.
For x < xc, when only the 2D FS is present, we
found that the sign of b is negative. This gives rise
to positive γ3 at x ≤ xc and negative γ3 at x >
xc, consistent with the data in NaxCoO2 (see Fig.
3b,c). We further show that b is singular at small µ
and this gives rise to non-monotonic behavior of γ3
around xc – it increases upon approaching xc from
below, passes through a maximum and then rapidly
decreases and changes sign at x ≥ xc (Fig. 3c). We
argue that this behavior is fully consistent with the
data.

When the temperature exceeds 1/(ξ2γ), the sys-
tem enters into a quantum-critical regime. We found
that in this regime, the specific heat can be well fit-
ted by C(T )/T ∝ log T (see Fig. 4). The lower
boundary of quantum-critical behavior extends to
lower T as x increases towards the onset of a mag-
netic transition at x ≈ 0.75. This is again consistent
with the experiment [3] which observed C(T )/T ∝
log T down to 0.1 K at x = 0.747.

The model. We follow earlier works[14, 32] and
consider fermions with the tight-binding dispersion
ε(k) on a triangular lattice with hopping up to sec-
ond neighbors in xy plane and to nearest neighbors
along z-direction [25]. The dispersion, shown in
Fig. 1, has a hole-like behavior at large momentum
(∂ε(k)/∂k < 0) and a local minimum at the Γ point
k = 0. At µ < 0, (x < xc = 0.62) the Fermi surface
consists of a single quasi-2D hole pocket with large
kF = kF1. As µ crosses zero and becomes positive,
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FIG. 4: Experimental data for doping x = 0.63, 0.65, 0.72 from Ref.12 (a) and theoretical (spin-fluctuation) result
(b) for C(T )/T in semi-logarithmic temperature scale. The dashed lines correspond to C(T )/T ∝ log T fit. The
prefactor of the log T depends on magnetic correlation length ξ

a new 3D Fermi pocket appears, centered at the Γ
point (see Fig. 1). For the specific heat analysis
at small |µ| we can approximate the dispersion near
k = 0 by ε(k) = k2/(2m) + k2z/(2mz) and approxi-
mate the large Fermi surface by an effectively 2D dis-

persion ε(k) ≈ vF1(k − kF1), where k =
√
k2x + k2y.

In our analysis, we do not consider Na charge order-
ing. Such an ordering does indeed develop at inter-
mediate dopings [33, 34]. However, in the measure-
ments in Ref. 12, which we compare with our theory,
the samples were quenched from high temperature to
room temperature without showing any signs of Na-
ordering during characterization and were argued to
be in a quasi-equilibrium state [35].

C(T ) for free fermions. To set the stage for the
analysis of interaction effects we first compute the
specific heat for free fermions with non-monotonic
dispersion ε(k). The grand canonical potential is
given by

Ω(T, µ, V ) = −T
∫
ρ(ε) ln(1 + e−(ε−µ)/T )dε, (1)

Evaluating the entropy S(T, µ, V ), extracting µ =
µ(T, V ) from the condition on the number of par-
ticles and expanding C(T ) = CV (T ) = T

(
∂S
∂T

)
V

in
temperature, we obtain at the lowest T

C(T )/T = γ1 + γ3T
2 +O

(
T 4
)

γ1 =
π2ρ

3
, γ3 =

π4

30

(
7ρρ′′ − 5 (ρ′)

2
)

ρ
(2)

where ρ(µ) and its derivatives over µ are computed
at T = 0. The low-T expansion in (2) is valid for
T < |µ|. Analyzing (2), we find that for µ < 0, when
there is no electron pocket, the T dependence comes
from a large hole pocket and is non-singular. For µ >
0, the electron pocket appears with ρ(µ) ∝ √µθ(µ).
This gives rise to negative γ3, which diverges at small
µ as 1/µ3/2. At µ = 0 the analytic expansion in
powers of T 2 doesn’t work even at the lowest T . We

found[36] that in this case

C(T )

T
= γ1 + 2.88

m
√

2mz

π2

√
T +O(T ) (3)

The same behavior holds at a finite µ, when T > |µ|.
Observe that the prefactor for

√
T term is positive,

opposite to that of T 2/µ3/2 term. This implies that
the temperature dependence of C(T )/T changes sign
at some positive µ. The actual T dependence of
C(T )/T , obtained without expanding in T , is pre-
sented in Fig. 2a, and γ1 and γ3 extracted from fit-
ting this C(T )/T by γ1 + γ3T

2 in different windows
of T are shown in Fig.3b,c and in Ref.36. We see
that both γ1 and γ3 depend on where the T window
is set, and γ3 as a function of doping changes sign at
some x > xc, i.e., at some positive µ, as expected.

Interaction contribution to C(T ). At a qualita-
tive level, the free-fermion formula for C(T ) is con-
sistent with the data. At the quantitative level, it
strongly differs from the measured C(T ), even if we
would use a renormalized dispersion with larger ef-
fective density of states. To see the inconsistency,
we compare in Fig.3b,c the theoretical and experi-
mental doping dependence of C(T ) and particularly
the values of γ1 and γ3 fitted over various tempera-
ture ranges. We see that the magnitude of C(T )/T
for free fermions and the strength of doping varia-
tion of γ3, extracted from it, is much smaller than
in the data. These discrepancies call for the analysis
of interaction contributions to C(T ).

A fully renormalized fermion-fermion interaction
can be decomposed into effective interactions in the
charge and in the spin channel. For systems with
screened Coulomb repulsion, the effective interaction
in the spin channel get enhanced and, if the system
is reasonably close to a Stoner instability, can be
viewed as mediated by spin fluctuations. NaxCoO2

does develop a magnetic order at x > 0.75 [6, 7, 10,
11], and it seems reasonable to expect that magnetic
fluctuations develop already at x ≈ xc.

The spin-fluctuation contribution to the thermo-
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dynamic potential is given by [31, 37, 38]

Ω = Ω0 +

∫
dω

π
nB(ω)

∫
d3q

(2π)3
Im lnχ−1(q, ω) (4)

where Ω0 is the free-fermion part, nB is the Bose
function, and χ(q, ω) is fully renormalized dynamical
spin susceptibility.

To obtain χ(q, ω) we use the same strategy as
in earlier works [39, 40]: compute first the static
spin susceptibility χ0(q, ω = 0) of free fermions,
then collect RPA-type renormalization and convert
χ0(q, ω = 0) into full static χ(q, ω = 0), and then
compute the bosonic self-energy coming from the in-
teraction with low-energy fermions and obtain the
full dynamical χ(q, ω) at low frequencies. The result
is[36]

χ−1(q, ω) =
χ

ξ−2 + (q − kF1)2 + bω2 − iγω
(5)

where ξ is a magnetic correlation length and the last
term is the Landau damping. The sign of γ3 term in
C(T ) depends on the sign of b – the prefactor for the
ω2 term (see Eq. (9) below). To obtain b in our case
we first evaluated the susceptibility of free fermions
χ0(q, ω) and then obtained χ(q, ω) using Random
Phase Approximation (RPA). For most relevant q ≈
kF1

we obtained (see [36] for details)

χ0(q, ω) =

√
mmz

4π2vF1
[(ω − µ̃) log (|ω − µ̃|)

− (ω + µ̃) log (|ω + µ̃|)] + ... (6)

where µ̃ = µ − (q − kF1
)2/(2m) and dots stand for

regular terms. Expanding in ω and substituting into
the RPA formula, we obtain

b =

√
mmz

4π2mza0vF1

1

µ̃
(7)

γ =

√
mmz

4πmza0vF1
θ(µ̃) +

1√
3πv2F1mza0az

, (8)

where a0 is of order of lattice spacing in xy plane,
az is inter-layer spacing. Note that near µ = 0 the
quadratic coefficient b is singular and its dependence
on q becomes important. The 1/µ̃ dependence of b
originates from the singularity in the derivative of
density of states at the Lifshitz transition. The T 3

term in C(T ) at x < xc and small T ( T < |µ| and
T < 1/(ξ2γ) ) comes from expanding Im lnχ−1 in
(4) to order ω3 and integrating over q near q = kF1.
When |µ| > ξ−2/m the q-dependence of b and γ may
be neglected and we obtain

γ3 = γkF1ξ
3π

3

10

(
−4b− (γξ)2

)
(9)

Eq.(7) for b suggests a singular behavior of γ3 near
µ = 0. For small |µ| < ξ−2/m the singularity is
smoothed by q-dependence of γ and b and eq.(9)
needs to be replaced by the result of numerical inte-
gration. The results, in particular a sharp maximum
in γ3 near xc, are in good agreement with experi-
ment, see Fig. 3b,c.

At higher temperatures, when T > 1/(ξ2γ) the
system enters into a quantum-critical regime where
it shows the same behavior as at ξ−1 = 0. The
form of C(T )/T at such temperatures in principle
depends on the effective dimensionality of spin fluc-
tuations around q = q0 (see Ref. 36). We find,
however, that such dimension-specific behavior holds
only at high T , while in the intermediate regime
T >∼ 1/(ξ2γ), C(T )/T can be well fitted by log T
even for effectively 1D spin fluctuations. This agrees
with the data which show a log T behavior even at
doping x = 0.65, see Fig. 4. As ξ and γ increase
at larger x, the lower boundary of log T behavior
of C(T )/T stretches to progressively smaller T and
a prefactor of log T grows, in agreement with the
experiments at higher doping (Ref. (3, 12)).

For quantitative comparison with the data, we
compute the dynamical part of particle-hole bubble
without expanding in frequency and use (4) to ob-
tain the thermodynamic potential and the specific
heat. To estimate ξ we use the experimental data
for χ(0, 0)/γ1 at x ≈ xc and our numerical RPA re-
sult for the prefactor for (q− q0)2 term in χ−1(q, ω).
Extracting ξ from these data we obtain ξ ≈ 7a0 near
x = 0.62 and it grows with the doping. For better
comparison we subtract from the data the contri-
bution from phonons Cph ≈ T 3 · 0.07mJK−4mol−1,
which only weakly depends on doping [41]. The re-
sults are shown in Fig. 2b and Fig. 3b,c. We see that
theoretical and experimental C(T ) agree quite well
over a wide range of temperatures, and the agree-
ment between γ1 and γ3, extracted from the data
and from spin-fluctuation theory, is also very good.
We emphasize that the doping variation of γ3 is not
affected by the phonon contribution and thus mea-
sures solely the contribution to C(T ) from spin fluc-
tuations. From this perspective, a good agreement
with the data is an indication that magnetic fluctu-
ations with large q = kF1 are strong in NaxCoO2

near the LTT. The log T behavior of C(T )/T , which
we found at T ∼ 3− 10K for x ≈ 0.7 is also consis-
tent with the data, see Fig.4. Finally, we note that
the experimental data on γ1, fitted at T ∼ 10K,
show a small discontinuity as a function of doping,
Figs.3b,c, which is expected if the LTT is first order
[42]. The jump in µ is estimated to be 5 to 10 meV.
When we take this into account, we obtain a sharper
doping dependence of γ3, leading to an even better
agreement with the data.

Conclusions. In this work we have analyzed
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the specific heat in the layered cobaltate NaxCoO2.
Near x = 0.62 the system exhibits a non-analytic
temperature dependence and strong doping varia-
tion of the specific heat coefficient C(T )/T . We ex-
plained the data based on the idea that at xc = 0.62
the system undergoes a LTT in which a new elec-
tron pocket appears. We demonstrated that the
non-analytic temperature dependence of C(T )/T at
x = xc and its strong doping variation is quantita-
tively reproduced if the interaction is mediated by
spin fluctuations peaked at the wave-vector which
connects the original and the emerging Fermi sur-
faces. We argued that the observed log T behavior
of C(T )/T at larger doping 0.65 <∼ x < 0.75 is an
indication that the system enters into the magnetic
critical regime.

We acknowledge useful discussions with S. Carr,
A. Katanin, F. Kusmartsev, D. Maslov, J. Quin-
tanilla, S. Shastry, J. Zaanen. We thank Y. Okamoto
and Z. Hiroi for communication and for sending
us the experimental data. The work was sup-
ported by the EPSRC grants EP/H049797/1 and
EP/l02669X/1 (J.J.B. and S.S.) and by the DOE
grant DE-FG02-ER46900 and a Leverhulme Trust
visiting professorship held at Loughborough Univer-
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