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Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly inter-
mittent in space, being concentrated in sheet-like coherent structures. Much less is known about
intermittency in time, another fundamental aspect of turbulence which has great importance
for observations of solar flares and other space/astrophysical phenomena. In this Letter, we
investigate the temporal intermittency of energy dissipation in numerical simulations of MHD
turbulence. We consider four-dimensional spatiotemporal structures, “flare events”, responsible
for a large fraction of the energy dissipation. We find that although the flare events are often
highly complex, they exhibit robust power-law distributions and scaling relations. We find that the
probability distribution of dissipated energy has a power law index close to α ≈ 1.75, similar to
observations of solar flares, indicating that intense dissipative events dominate the heating of the sys-
tem. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.

PACS numbers: 52.35.Ra, 95.30.Qd, 96.60.Iv, 52.30.Cv

Introduction.— Intermittency plays a major role in tur-
bulence by causing processes such as energy dissipation
and particle acceleration to be highly localized in coher-
ent structures. It also forestalls efforts toward a complete
theory of turbulence. Many tools have been employed to
study intermittency, including structure functions [1, 2],
scale-dependent kurtosis [3], topological methods [4, 5],
and statistics of discontinuities [6, 7]. However, past
studies have mainly focused on spatial intermittency, giv-
ing limited information about the dynamics. In order
to understand the temporal aspects of intermittency, in-
cluding characteristic timescales of structures as well as
their interactions and stability, a broader framework is
needed.

A promising new paradigm is the statistical analysis
of coherent structures, which is robust and informative
for studies of intermittency. The occurrence rates, in-
tensities, and morphology of structures yield insight to
the inhomogeneity, anisotropy, and characteristic scales
of the dynamics. Coherent structures can be simply iden-
tified as regions in space bounded by an isosurface of
some field. This was used to study vorticity filaments
in hydrodynamic turbulence [8–10], magnetic structures
in the kinematic dynamo [11], and dissipative structures
in magnetohydrodynamic (MHD) turbulence [12–15] and
ambipolar diffusion MHD [16]. Since coherent structures
and intense dissipative events are experimentally observ-
able, there are many practical applications including so-
lar flares, instabilities in fusion devices [17], and radiative
signatures in optically thin astrophysical plasmas, e.g., in
black-hole accretion disk coronae [18], hot accretion flows
[19], and jets [20]; in pulsar wind nebulae [e.g. 21, 22];
and possibly in the hot gas in galaxy clusters.

This Letter addresses some fundamental aspects of in-

termittency in MHD turbulence. A major question is
whether, in the limit of large Reynolds number, energy
dissipation is dominated by a few intense, large-scale
events or by many weak, small-scale events. A related
question is whether there is an inherent relationship be-
tween spatial intermittency and temporal intermittency,
e.g., whether larger structures retain their coherency in
time. These temporal aspects of intermittency have been
practically unexplored in previous MHD studies.

In this Letter, we extend a framework previously de-
veloped for the statistical analysis of dissipative struc-
tures [14] into the temporal realm, thereby considering
4D spatiotemporal objects representing flare events. We
apply this novel methodology to study intermittency in
numerical simulations of strong incompressible MHD tur-
bulence. We describe the distributions, scalings, and evo-
lution of flare events by characterizing their length scales,
durations, dissipated energies, and peak energy dissipa-
tion rates. These are the first results on the fundamental
properties of the combined spatial and temporal inter-
mittency of energy dissipation in 3D MHD turbulence.

The primary questions addressed here for MHD turbu-
lence are also fundamental for the solar corona. In fact,
our approach has strong similarities with observational
studies of solar flares [23–32] and stellar flares [33–36],
which use the time-series of X-ray and extreme UV emis-
sions to measure the duration, peak intensity, and fluence
of flares, from which dissipated energy is inferred. For
the solar corona, a measurement of central importance
is the probability distribution for dissipated energy, due
to its role in assessing the nanoflare model for coronal
heating [37, 38]. This distribution exhibits a power law
over eight orders of magnitude, with an index near −1.8,
somewhat shallower than the critical index of−2 required
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for nanoflares to dominate the overall heating [39].
We compare our results with the observed statistical

properties of solar flares. We stress that there are several
basic differences between incompressible MHD turbu-
lence and the solar corona. In contrast to volumetrically-
driven turbulence, the solar corona is modeled by force-
free MHD with slowly-driven, line-tied boundaries. Fur-
thermore, kinetic effects may become important during
reconnection. Despite these differences between our sim-
ulations and the solar corona, we find that the statisti-
cal properties of flare events have multiple similarities in
both cases. This suggests that MHD turbulence may play
a role in the energetics of the corona [30, 40], a possibil-
ity that should be investigated more carefully in future
studies.

Method.— We perform simulations of reduced MHD,
applicable since the uniform background magnetic field
B0 = B0ẑ is strong relative to turbulent fluctuations,
B0 ≈ 5brms. The equations are [41]
(

∂

∂t
∓ V A · ∇‖ + z∓ · ∇⊥

)

z± = −∇⊥P + ν∇2
⊥z

± + f±
⊥

∇⊥ · z± = 0 (1)

where z± = v ± b are the Elsässer variables (perpen-
dicular to B0), v is the velocity field, b is the fluc-
tuating magnetic field (in units of the Alfvén velocity,
V A = B0/

√
4πρ0, where ρ0 is the uniform plasma den-

sity), P is the total pressure, and f±
⊥ is the external

forcing. We use uniform fluid viscosity ν and magnetic
diffusivity η with ν = η. We consider structures in the
current density j = jz = ẑ · ∇⊥ × b; the resistive energy
dissipation rate per unit volume is ηj2.
Equations (1) are solved using a fully dealiased 3D

pseudo-spectral algorithm (for details, see [42]). The pe-
riodic box is elongated in ẑ by a factor of L‖/L⊥ = 6,
where L⊥ = 2π is the box size in simulation units.
Timescales are in units of eddy turnover times, τeddy =
L⊥/(2πvrms) ≈ 1. The turbulence is driven at large
scales by colliding Alfvén waves, generated from statis-
tically independent random forces f±

⊥ at wave-numbers
2π/L⊥ ≤ kx,y ≤ 2(2π/L⊥), kz = 2π/L‖. The forc-
ing is solenoidal, has random Fourier coefficients taking
Gaussian values that are refreshed independently approx-
imately 10 times per eddy turnover time, and has ampli-
tude such that brms ∼ vrms ∼ 1. The Reynolds number
is given by Re = vrms(L⊥/2π)/ν.
We analyze snapshots dumped at a cadence (∆t)−1

from four simulations shown in Table I. The main results
are from runs with 5123 resolution, with the Re = 1250
case having the highest cadence and longest time interval.
Due to computational constraints, ∆t is larger than the
internal time step in the simulation. The minimum ca-
dence required to properly track structures is estimated
by requiring that the distance advected by the flow dur-
ing ∆t is less than the typical current sheet thickness,

giving vrms∆t < brms/jthr. The cadences are compara-
ble to this value and the results show convergence with
cadence.

TABLE I. Simulations

Sim. Res. Re ∆t−1 Time interval

1 2563 800 64 10.0

2 5123 800 32 12.2

3 5123 1250 64 15.6

4 5123 1800 32 12.2

We refer to spatial dissipative structures in a given
time snapshot as states; they are identified as spatially-
connected sets of points with current densities |j(x)| ex-
ceeding a fixed threshold, jthr [43]. Typical states are
thin, ribbon-like current sheets aligned with the z direc-
tion. They occupy a small fraction of volume but ac-
count for a large fraction of the overall resistive energy
dissipation. Their lengths and widths span the inertial
range, while thicknesses are localized inside the dissipa-
tion range [13, 14].
Our present work extends this procedure into the tem-

poral realm by applying a similar threshold criterion to
the 4D space-time field j(x, t). We refer to the result-
ing 4D spatiotemporal structures as processes or flare
events. Our numerical algorithm first identifies the states
in each snapshot as described above. It then connects the
states in time by finding, for each given state, any other
states in the two adjacent (past and future) snapshots
having points connected to the same spatial region. In
general, the states in one snapshot are not in bijective
(i.e., one-to-one) correspondence with the states in the
adjacent snapshot. This is due to interactions between
structures, including mergers and divisions, and also the
spontaneous formation of new states and destruction of
old states. We refer to a sequence of states representing
bijective evolution of a structure, beginning and ending
with interactions, formation or destruction, as a path.
Processes are then obtained as sets of paths connected
via interactions. The natural and conservative approach
for a temporal analysis is to study processes rather than
individual paths, which become ambiguous upon inter-
acting.
We characterize processes by the following quantities.

The process duration τ is the time between the final
state of the process and its initial state (normalized to
τeddy). The length L for a state is the maximum dis-
tance between any two constituent points (normalized
to the perpendicular box size L⊥). This is generalized
for a process as the maximum length, Lmax, among con-
stituent states. The instantaneous Ohmic energy dissi-
pation rate for a state is E =

∫

dV ηj2, with integration
over the constituent points of the state (normalized to
average total energy dissipation rate, Etot ≈ 1). This
is generalized to the total dissipated energy of a pro-
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cess, E =
∫

dt
∫

dV ηj2, by combining the energy dis-
sipation rates of all constituent states (normalized to
Etot ≈ Etotτeddy ≈ 1). We also consider the peak energy
dissipation rate, Emax, which is the maximum energy dis-
sipation rate among constituent states.

Results.— For the following analysis, we choose
jthr/jrms ≈ 6.8. This threshold is high enough to avoid
percolation of processes through space and time. Pro-
cesses that exist during the initial or final snapshots do
not significantly contribute to the statistical results; we
retain them in distributions for better statistics.
An example process, with duration τ ≈ 0.5 and 31

distinct paths, is shown in Fig. 1. Representative states
are shown (in green) on a subdomain of the simulation
grid. We also show a schematic of the paths and interac-
tions in the process. The process includes a division after
the structure is stretched. A large number of paths are
produced during the final stages, as the process decays
toward the threshold.
We now consider the statistical properties of the

processes from the four simulations in Table I. The
mean number of states per snapshot is 〈Nstate〉 =
{194, 288, 657, 1328}. For fixed cadence of ∆t−1 = 32,
the mean number of processes per eddy turnover time
is Nproc = {914, 1271, 4272, 11608}, strongly increasing
with Re. The most complex processes have ∼ 103 con-
stituent paths. We find a consistent asymmetry in the
interactions: there are more divisions than mergers, with
a ratio Nmer/Ndiv = {0.84, 0.78, 0.80, 0.82}.
We show in Fig. 2 the probability distributions for

dissipated energy E and for peak energy dissipation
rate Emax. The distribution for dissipated energy, P (E),
has a power-law tail with an index near−1.75±0.1, which
is close to the analogous observations for total energy re-
leased in solar flares [29, 44]. The power law extends
across three orders of magnitude in E, from E ≈ 10−5

up to about E ≈ 10−2. For smaller E, the distribution
is shallower and apparently non-universal, likely due to
dissipation-range effects and threshold effects. With in-
creasing Re, the power law extends to smaller E, consis-
tent with the longer inertial range. The distribution for
peak energy dissipation rate, P (Emax), exhibits a power
law with index close to −2.0 ± 0.1 from Emax ≈ 10−4

to Emax ≈ 10−2. Similar indices are observed in distri-
butions for peak hard X-ray flux in solar flares [e.g., 44]
and for energy dissipation rates E of states [14].
The distribution for process durations τ is also shown

in Fig. 2. The durations extend to well above an eddy
turnover time, sometimes comparable to the analyzed
time interval. The distribution from τ ≈ 0.2 to τ ≈ 8
can be fit to a power law with index near −3.2 ± 0.2,
somewhat steeper than the indices ranging between −2.2
and −3.0 for solar flare durations [23, 32, 44], although
close to the index −3.4 for rise times [28].
The process characteristics are related by strong cor-

relations, with examples shown in the scatterplots in
Fig. 3. We find that Lmax ∼ τ , previously inferred
in solar flare observations [45], while Emax ∼ τ2 and
E ∼ τ3. These scalings are consistent with the estimate
E =

∫

dt
∫

dV ηj2 ∼ τEmax ∼ τVmaxηj
2
thr ∼ τ3, assum-

ing that volume scales as length squared [13, 14] and
current densities are near jthr. From these correlations,

E ∼ E3/2
max, and hence P (E) is shallower than P (Emax).

Finally, we consider the evolution of processes over
their durations, based on the constituent states at
the given times. We focus on the energy dissipation
rate, E(t) for 0 < t < τ . Although this time-series
is irregular for any given process, we find that pro-
cesses of all durations exhibit similar average evolu-
tions. In Fig. 4, we show the energy dissipation rate
normalized to the peak, E(t)/Emax, versus normalized
time, t/τ , averaged for all processes. We find that
〈E(t/τ)/Emax〉 ≈ sin (πt/τ). Minor deviations suggest
a temporal asymmetry, quantifiable by the first moment,
〈t/τ〉E =

∫ τ

0
(t/τ)E(t)dt/

∫ τ

0
E(t)dt, which is 0.5 for sym-

metric functions. We measure a very small but consis-
tent asymmetry: for Re = {800, 1250, 1800}, 〈t/τ〉E =
{0.483, 0.483, 0.476}. Hence a flare event grows slightly
faster than it decays; this is similar to observed solar and
stellar flares, although the asymmetry is amplified by the
Neupert effect [28, 29, 32, 36, 46].

Conclusions.— In this Letter, we investigate the com-
bined temporal and spatial intermittency of energy dissi-
pation in numerical simulations of MHD turbulence. The
conclusions are robust with respect to cadence, resolu-
tion, and threshold. We find that a significant fraction
of energy dissipation occurs in current sheets that are
temporally organized in intense, long-lived flare events
with durations that may span several large eddy turnover
times. The process duration scales proportionally to its
maximum length. The energy dissipated in these in-
tense processes is distributed as a power law with in-
dex near −1.75, implying the dominance of large, intense
flare events. This can be compared to the spatial struc-
tures at fixed times, which have a distribution of energy
dissipation rates closer to the critical index of −2, sug-
gesting that structures of all intensities instantaneously
contribute equally to the overall energy dissipation rate
[14].
We find that the distributions and scalings are in-

sensitive to Re, suggesting universality. This is consis-
tent with the fact that the structures are coherent across
inertial-range scales, with only their thickness being set
by the dissipation mechanism. The dependence of the
statistics on Re has likely saturated at the relatively low
Re considered here, making the results relevant for large
Re in space and astrophysical turbulence.
We find asymmetry in the divisions and mergers of

current sheets, as well as in the evolution of the energy
dissipation rate of a process. This temporal asymmetry
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FIG. 1. States in a typical process with duration τ ≈ 0.5, shown in green on a piece of the simulation lattice (with dimensions
0.10L⊥ × 0.14L⊥ × 0.90L⊥, without accounting for elongation of the lattice vertically). Also shown is a schematic of paths and
interactions in the process, with red lines marking the times corresponding to the shown states.

FIG. 2. The probability distributions for dissipated energy E, peak energy dissipation rate Emax, and duration τ for Re = 800
(red), Re = 1250 (blue), and Re = 1800 (green).

can possibly be linked to the direct cascade of energy
from large to small scales, giving large structures a ten-
dency to divide into smaller structures. In future studies,
temporal asymmetry may be a useful diagnostic for cur-
rent sheet instabilities, including the tearing instability
[47–50].

The present work lays out the foundation for a com-
prehensive statistical analysis of dissipative processes in
MHD turbulence, to appear in a future paper [51]. The
methodology can be applied to many other systems, in-
cluding hydrodynamic turbulence [52], line-tied MHD
[15, 53], kinetic plasma turbulence [54, 55], avalanching
systems [56], and other complex dynamical systems.
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