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ABSTRACT 14 

We have developed an efficient real-time time-dependent density functional theory (TDDFT) 15 

method that can increase the effective time step from <1 attosecond in traditional methods to 0.1~0.5 16 

femtosecond. With this algorithm, the TDDFT simulation can have comparable speed to the 17 

Born-Oppenheimer (BO) ab initio molecular dynamics (MD). As an application, we simulated the 18 

process of  an energetic Cl particle colliding onto a monolayer of  MoSe2. Our simulations show a 19 

significant energy transfer from the kinetic energy of  the Cl particle to the electronic energy of  MoSe2, 20 

and the result of  TDDFT is very different from that of  BO MD simulations.   21 



 

Time-dependent density functional theory (TDDFT) has been widely used from optical excitation 1 

[1-4] to ion-material collisions [5-7]. For optical excitation, the TD-DFT can be solved under linear 2 

perturbation theory [8] using Casida formalism. In Ref.[9], the phonon dynamic has also been 3 

incorporated into the TD-DFT in a perturbation theory. On the other hand, for many problems, direct 4 

real-time evolution of  the Schrodinger’s equation is necessary, e.g., to study nonlinear optical response 5 

[10], ultrafast magnetic dynamics [11], or to study an ion collision with a substrate [6,12-14]. TD-DFT 6 

can also be viewed as belonging to the general non-adiabatic molecular dynamic (NA-MD) [15,16]. In 7 

NA-MD, the electron wave function follows the time dependent Schrodinger equation, while the 8 

nuclear movement follows the classical Newton’s law. The direct NA-MD without introducing the 9 

energy surface hopping [17], or wave function collapsing [18] is also called Ehrenfest dynamics [19]. 10 

Compared to the adiabatic Born-Oppenheimer ab initio molecular dynamics (BO-MD), the NA-MD 11 

can be used to study problems where the electronic states are excited during the dynamics process, e.g., 12 

the carrier cooling [20], carrier transport [21,22] and charge transfer induced chemical reaction [23]. 13 

While extremely powerful, so far the real-time TD-DFT suffers from its extremely high computational 14 

cost. The time step it can use is typically around 1 attosecond (as), compared to 1 femtosecond (fs) time 15 

step in BO-MD. In this work, we present a new algorithm which can increase the effective time step to 16 

0.1~0.5 fs, hence makes it comparable to the BO-MD simulations.  17 

Many algorithms have been developed in literature to evolve the wave functions directly starting from 18 

the fundamental formula ( ) ( )iHdt
i it dt e tψ ψ−+ = . Taylor expansion, split operator [24, 25], and Lanczos 19 

methods [26] have been used to approximate e-iHdt. But all these approximations require 1|| <<Hdt  for 20 

accurate evaluation of  this operator. However, since the energy spectrum width of  H, especially under 21 

the flexible plane wave basis set, can be rather large (e.g., 400 eV), this results in dt < 10-3 fs. Here, we 22 

will follow the formalism often used in quantum chemistry, expanding )(tiψ  by the adiabatic eigen 23 

states )(tlϕ . Under the TD-DFT formalism, a set of  occupied single particle states { ( )}i tψ  will be 24 

calculated following time dependent Schrodinger’s equation:   25 

 
2( ) ( , ) (( ),      (), ( ) )( )i j i i

i

i t t H t R tt tt tρ ρ ψψ ψ∂ =∂ = ∑   (1) 26 

i=1,M is the index of  the occupied states, and M is the number of  electron. The instantaneous 27 

exchange-correlation functional approximations will he used in the ))(),(,( ttRtH j ρ  expression and 28 

external stimulation (e.g., external photon potential) can also be included in H. The nuclear positions 29 

( )jR t  will follow 30 

 2 2( ) ( )j j jM d R t dt F t=   (2) 31 

( )jF t  is the ab initio force on the j-th nuclear with mass Mj calculated from the DFT total energy 32 

)})({)},(({ ttRE ij ψ  as jijj RREF ∂−∂= /}){},({ ψ  (with a formula and implementation similar to that 33 

of  the Hellmann-Feynman theory). The Eq.(1), (2) constitute an Ehrenfest dynamics [19]. 34 



 

To integrate Eq.(1), we will expand ( )i tψ  in terms of  the adiabatic eigen states ( )l tϕ : 1 

 ,( ) ( ) ( )l
i

i i lt C t tϕψ =∑   (3) 2 

and here ( ))(),(,()( ttRtHtH j ρ≡ ) 3 

 ( ) ( ) ( ) ( )l l lH t t t tϕ ε ϕ=   (4) 4 

Now, plug Eq.(3), (4) into Eq.(1), we have:  5 

 , , ,( ) ( ) ( ) )) ((i l i l i k
k

l lkC t i t C t C t V tε= − −∑&   (5) 6 

where 7 

 ttttV kllk ∂∂= /)()()( ϕϕ   (6) 8 

Due to the fact that )(tlε  appears explicitly in the diagonal term in Eq.(5), the dt used to evolve 9 

Eq.(5) will no longer be limited by the energy spectrum width of  H. In practice, however, the dt used to 10 

integrate Eq.(5) can still be rather small due to the off  diagonal term )(tVlk , which describes the 11 

coupling between adiabatic states l and k. The )(tVlk  can have very sharp peak with time, especially 12 

when coupling between l and k are weak [27]. This difficulty however is in a sense artificial due to the 13 

use of  )(tlϕ which can change its identity suddenly when two states anticross each other in energy 14 

(hence ttk ∂∂ /)(ϕ  in Eq.(6) becomes extremely large). In [27], we have developed an algorithm to 15 

overcome this problem. Under this algorithm, during the time interval 1 2[ , ]t t , we can use )( 1tlϕ  as the 16 

basis to represent the Hamiltonian as a matrix, then every element of  this matrix within 1 2[ , ]t t  can be 17 

approximated as 18 

 1 1 2 21 1( ) ( ) ( ) ( ) ( ( ) ( ))H t H t t t t t H t H t= + − − × −   (7) 19 

In order to obtain the two matrices H(t1) and H(t2), all we need to have are )}(),({ 11 tt ll ϕε  and20 

)}(),({ 22 tt ll ϕε . It has been shown that [27], for a typical carrier dynamics problem, Eq.(7) holds very 21 

well for 5.012 ≤−=Δ ttt fs. Now, to integrate the Eq.(5), (6) from t1 to t2, an small dt (< attosecond) is 22 

used. However, within the [t1,t2] interval, instead of  solving {φl(t)} from the original Hamiltonian 23 

(Eq.(4)) for every dt step, we solve {φl(t)} by diagonalizing the matrix of  Eq.(7), and representing {φl(t)} 24 

with {φl(t1)}. This requires the diagonalizing of  a NxN Hij(t) matrix from Eq.(7) for every dt step, where 25 

N is the number of  adiabatic state included in Eq.(3). A major saving comes when we truncate the 26 

number N, so it is significantly smaller than the original number of  plane wave basis function in Eq.(1) 27 

and Eq.(4) (which can be a thousand time larger than N). As a result, the computational time on the 28 

integration of  Eq.(5) and (6) is negligible compared to the time for solving Eq.(4). The actual choice of  29 

N might depend on the problems. However, for most cases, a few eV above the ground state’s highest 30 

occupied adiabatic state might be good enough. For the problems to be studied later in this paper, we 31 

have used N=2M, where M is the number of  occupied orbitals. More technical details can be found in 32 



 

Ref.[27] and in the supplementary material (SM). Note that, if  needed, a further speed up is possible by 1 

not diagonalizing the matrix Hij(t) at each dt step within [t1,t2], but to integrate ψi(t) from Eq.(1) under 2 

the fixed basis set of  {φl(t1)} and the Hij(t) of  Eq.(7), and only change the basis set from {φl(t1)} to {φl(t2)} 3 

at t=t2.  4 

The above scheme has been worked out in Ref.[27]. However in Ref.[27] only one carrier wave 5 

functions are integrated with time, and the nuclear force is provided by classical force fields. Here, we 6 

will consider all occupied states )(tiψ  and use the DFT atomic forces calculated from )(tiψ for nuclei 7 

dynamics. There is however one problem needs to be solved. When using Eq.(7), we need to know  8 

Hamiltonian H(t2) at time t1. This requires us to know ρ(t2) while at t=t1. We have used an iterative 9 

leapfrog method to solve this problem. More specifically, at t=t1, we first estimate ρ(t2) (e.g., using linear 10 

extrapolation from previous steps), then get H(t2) and {φi(t2), εi(t2)}. We will use this to carry out 11 

Eq.(5)-(7), that will yield a new ρ’(t2). Then a mixed charge ρ”(t2) from ρ(t2) and ρ’(t2) (e.g., with the 12 

Kerker algorithm [28]) will be used in next loop. This will be repeated until ρ’(t2) and ρ(t2) are close to 13 

each other. In practice, we found that about 4 iterations are needed to get a well converged result. For 14 

the nuclear dynamics, we use the Verlet algorithm, hence while the electronic energies and atomic 15 

forces are evaluated at t1,t2 points, the velocities are evaluated at (t1+t2)/2 point. Thus, at t1, we know 16 

Fj(t1), hence know Vj((t1+t2)/2), then Rj(t2). The total energy can be evaluated at (t1+t2)/2, with the 17 

electronic energy at that point being the average of  the values at t1 and t2. A good way to test the 18 

accuracy of  the Ehrenfest dynamics is to check the total energy conservation during the simulation.  19 

To test the above algorithm, we have first applied it to a few simple systems. Norm conserving 20 

pseudopotentials are used with plane wave basis set in the original Hamiltonian. PBE [29] generalized 21 

gradient approximation functional is used. The ground states {φl(t)} at each Δt step (t1,t2,..) are 22 

calculated by the conjugate gradient method as implemented in PEtot code [30]. The evolution of  23 

Eq.(5) for different “i” in Ci,l(t) can be carried out with different processors, results in high 24 

parallelization to carry out Eq.(5).  25 

The first test system is an 8 atom cell CdSe with only Γ point. It has 72 electrons in total, we have 26 

used 72 adiabatic states (note each state can be occupied by 2 electrons). The result of  Eq.(5)-(7) with 27 

Δt=0.2 fs and the one integrated from a simple direct integration: ( ) ( ) ( ) ( )i i it dt t idtH t tψ ψ ψ+ = −  with 28 

dt=10-5 fs are shown in Fig.1S and Fig.2S of  the supplemental materials. The difference of  these two 29 

simulations is extremely small and the remaining small error comes from the non-convergence of  the 30 

direct integration method regard to dt.  31 

For a second test, we have calculated the light absorption spectrum of  a 50 atom Au cluster using 32 

the new real time TDDFT method, and compared the result with the linear perturbation TDDFT 33 

method (using PWscf  code [31]). The excellent agreement is shown in Fig.3S. The third test system is a 34 

3x3x3 Aluminum cluster (of  4 atom face center cubic cell, hence with 108 Al atoms). An initial nuclei 35 

velocity is set according to 300K temperature, and an initial carrier excitation from one valence state to 36 



 

one conduction band state is used as shown in Fig.4S. This problem mimics a hot carrier cooling 1 

process in a metal cluster, a very important topic in plasmonic harvest of  hot carriers [32, 33]. The 2 

system contains 324 electrons. Here we have used 324 adiabatic states (2 electrons per state) with 3 

roughly half  to be occupied. In Fig.5S, the total energy is shown together with the kinetic energy and 4 

potential energy (the DFT energy). As can be seen the total energy is well conserved, indicating the 5 

overall high accuracy of  the Ehrenfest dynamics. We do note that, to simulate a hot carrier cooling 6 

accurately, one does need to include the beyond Ehrenfest dynamics methods [17, 18, 27]. 7 

Finally we have applied TD-DFT method on a Chlorine atom (or ion) colliding to a monolayer of  8 

MoSe2. Transition-metal dichalcogenides MeX2, where Me stands for transition metals (Mo, W, Ti, etc.) 9 

and X for chalcogens (S, Se, Te), are important new 2D materials with potential usage in beyond 10 

CMOS electronic devices, or renewable energy applications [34-36]. One possible way to dope the 11 

system is to replace one chalcogen by one Cl or Br [37]. Such doping process can be done in many 12 

different ways, but a standard way in the electronic industry is via the ion implantation, where an ion 13 

beam directly collides with the substrate [38]. Ions and graphene collision has been simulated with 14 

TD-DFT methods before [12-14].  15 

The system studied is shown in Fig.1. Initially, Cl- ion (or neutral Cl atom) is placed 5 Å away from a 16 

monolayer MoSe2, but is having a perpendicular 0.5 Å/fs velocity which corresponds to a kinetic 17 

energy of  460eV. To avoid the possible small variation in the result due to random thermo movement, 18 

we have set the initial temperature to zero (although an initial room temperature would only give a 19 

negligible small difference). A 28 atoms (including Cl) 3x3 MoSe2 superlattice is built with periodic 20 

boundary conditions, sampled with Γ point only. The vertical direction dimension is 10 Å. 30 Ryds 21 

plane wave cutoff  is used. 170 adiabatic states (2 electrons per state) are used, and there are 170 valence 22 

electrons for the Cl- ion case. We have simulated 7 projectiles all located near the center of  the 23 

hexagonal ring, as indicated by the red points in Fig.1(b). The time for the ion to travel through this 24 

system is about 26 fs, thus we have only simulated 26 fs, although much longer time simulation is 25 

possible. The Δt (=t2-t1) we used is 0.1 fs. It costs about 20 hours on 128 processors to simulate one 26 fs 26 

projectile. We have also considered both Cl- ion and neutral Cl atom collisions in order to compare with 27 

BO-MD results, since in BO-MD, there is no easy way to simulate Cl- ion collision (the additional 28 

electron will occupy the MoSe2 conduction band state, instead of  the Cl- state).   29 

 The projectile at the exact hexagonal central point is shown in Fig.2. In this case, the Cl ion (or 30 

atom) passes through the MoSe2 without destroying it. Three energies are shown with time: the MoSe2 31 

nuclear kinetic energy (green), the Cl nuclear kinetic energy (red) and the total electronic energy of  the 32 

system (blue, this is the DFT energy at a given point). The sum of  these three energies is the total 33 

energy of  this system, which is a straight line (thus not shown). We first see that, the Cl- and Cl results 34 

are rather similar, thus we will represent them with Cl in the following discussion. During the collision, 35 

the electronic system of  the MoSe2 takes 15~24eV from the kinetic energy of  the Cl. Under BO-MD 36 

simulation, most of  these electronic energies are given back to the Cl atom, thus at the end the Cl atom 37 



 

only loses 1.63eV converting to the nuclear kinetic energy of  MoSe2. On the other hand, for TD-DFT 1 

simulation, 14eV kinetic energy is lost for Cl, which has been converted to the electronic excitation in 2 

the MoSe2 system (which cannot be described by BO-MD). To better illustrate the kinetic energy loss 3 

and electron excitation in the TD-DFT simulation, we have shown in Fig.3 the electron occupation 4 

among the adiabatic density of  states (DOS) (as defined by 2
,1 , |)(| tC
mi li∑ =

for each adiabatic state 5 

)(tlϕ ) at 6 time steps during the collision process. We can see that, at the end of  the collision, in the 6 

TD-DFT simulation, there are electron occupations in the conduction band (mostly in the partial DOS 7 

of  MoSe2), while in BO-MD, by construction, that is not allowed. These higher energy excitations 8 

account for the 14 eV kinetic energy loss. We note that in the electronic energy curve of  Fig.2, there are 9 

three sharp peaks near 10fs, 13fs and 17fs, they all have a width of  2 fsτ ≈ . These energy peaks are 10 

representations of  the Hamiltonian changes, their 2 fs width corresponds to a Fourier periodicity of  4 fs, 11 

hence an energy E hω=  ~1eV, which coincides with the MoSe2 band gap and the excitation energy 12 

shown in Fig.3. This means the Hamiltonian change induced by the Cl collision provides high 13 

frequency perturbation to excite the MoSe2 system over its band gap. Finally, we note that there is no 14 

occupation near the upper end of  the energy spectrum shown in Fig.3, which means the {φl(t)} 15 

truncation we have used in Eq.(3) is adequate. Meanwhile, we find a charge transfer after the collision. 16 

While the Cl- ion loses -0.36e after the collision, the neutral Cl atom only loses -0.01e charge. To 17 

describe such charge transfer more rigorously, one has to go beyond the Ehrenfest dynamics, describing 18 

the charge transfer as a probabilistic event [17, 18], not as a partial charge occupation in Cl ion as in the 19 

mean field theory Ehrenfest description. Nevertheless, the charge loss does explain why the Cl- state 20 

has lowered its energy after the collision as shown in Fig.3(a). 21 

For other projectiles not exactly at the center of  the hexagon, their final Cl atoms will flight in 22 

slightly deflected directions and with different energy loss. This direction-energy relationship can be 23 

used experimentally to test the result of  our simulation. We have fit the simulated flight-out Cl kinetic 24 

energy as a function of  the angle of  emergence θ  and ϕ  (as their definitions in Fig.1(c)) based on 25 

the 7 projectiles (Fig.1(b)) and the symmetry considerations: 26 

 2
0 (1+ cos6 + cos3 cos 6 )out

ClT T α β θ γ θ θ ϕ= −   (8) 27 

The resulting parameters of  the three simulations (Cl- with TDDFT, Cl with TDDFT and Cl with 28 

BO-MD) are shown in Table.1S. The kinetic energy loss ΔTCl=TCl
in-TCl

out of  the Cl- ion with TDDFT 29 

and the Cl atom with BO-MD are shown in Fig.4. Future experiments need to be carried out to verify 30 

our results. 31 
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 1 

Fig. 1: (color online) The model of  Cl-MoSe2 collision. a is the horizontal distance between nearest 2 

neighbors, a=1.890 Å. The region of  incidence has been colored blue in (a) and zoomed in (b). Red 3 

points in (b) show the initial positions of  Cl. Scattering angles θ  and ϕ  are defined as shown in (c). 4 

 5 

Fig. 2: (color online) (a) Electronic and nuclear kinetic energies during the central point penetration, 6 

and (b) the atom positions and charge density isosurfaces at 3 time steps. 7 

 8 

Fig. 3: (color online) Snapshots for density of  states and occupations at 6 time steps, under different 9 

cases. Energy zero points are selected equal to the initial Fermi-energies. Only states near Fermi-energy 10 

are shown (-4.5eV to 4.5eV). Green, blue and red states are occupied adiabatic states, Cl occupied states, 11 

and unoccupied adiabatic state, respectively.  12 



 

 1 

Fig. 4: (color online) Polar plots for projectile energy loss ΔTCl from Eq. (8) under different cases. From 2 

center to the peripheral, the φ changes from 0 degree to 12 degree. A diagrammatic sketch for the 3 

incidence region has been shown in left down corner. 4 
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