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In reduced-dimensional semiconductors, doping-induced carrier plasmons can strongly couple with
quasiparticle excitations, leading to a significant band gap renormalization. However, the physical
origin of this generic effect remains obscure. We develop a new plasmon-pole theory that effi-
ciently and accurately captures this coupling. Using monolayer MoS

2
and MoSe

2
as prototype

two-dimensional (2D) semiconductors, we reveal a striking band gap renormalization above 400
meV and an unusual nonlinear evolution of their band gaps with doping. This prediction signifi-
cantly differs from the linear behavior that is observed in one-dimensional structures. Notably, our
predicted band gap renormalization for MoSe

2
is in excellent agreement with recent experimental

results. Our developed approach allows for a quantitative understanding of many-body interactions
in general doped 2D semiconductors and paves the way for novel band gap engineering techniques.

PACS numbers:

The band gap is a defining property of semiconductors
and it is typically not strongly influenced by extrinsic
factors, such as doping. However, because of dramati-
cally enhanced many-electron interactions, [1, 2], doping
in one-dimensional (1D) structures can induce an unex-
pectedly large band gap normalization (BGR) of around
several hundreds meV [3, 4]. Recently, graphene-inspired
two-dimensional (2D) semiconductors and their excited-
state properties have garnered enormous interest [5–10].
Since doping is a common occurrence [11–14], under-
standing the effects of BGR is essential for interpreting
experimental measurements, such as angle-resolved pho-
toemission spectroscopy (ARPES) [15–17] and extracting
exciton and trion [12, 14] binding energies.

Beyond immediate practical applications, obtaining
accurate quasiparticle (QP) energies and the correspond-
ing band gap in doped reduced-dimensional semiconduc-
tors stands as a fundamental challenge. A particular dif-
ficulty is capturing the screening that are dominated by
a unique low-energy acoustic carrier plasmon [18, 19].
Unlike in an undoped semiconductor, here the carrier
plasmon strongly couples with QP excitations. This can
result in a nonlinear resonance profile in the self-energy
[4, 22] that complicates the solutions to the Dyson equa-
tion. In other words, this subtle but important carrier
plasmon calls for a special dynamical treatment of the di-
electric screening that is beyond the scope of the widely
used general plasmon pole (GPP) model [23] but is cru-
cial for understanding electronic structure of general 2D
semiconductors.

In this work, we focus on two materials of broad inter-
est, monolayer MoS2 and MoSe2 and study their BGR
over a wide range of doping densities (n2D) using the GW
approximation. We propose and implement a generic
plasmon-pole model (PPM) approach that captures the
essential screening effect and markedly improves the ef-
ficiency of many-body calculations. Our study reveals

that by virtue of pure many body effects the QP band
gap of MoS2 exhibits a strongly nonlinear evolution when
varying the doping density; it drops sharply from 2.66 eV
across low doping densities but nearly saturates at 2.18
eV for high densities. This is a consequence of the deli-
cate interplay between carrier occupation and dielectric
screening. For doped MoSe2, our ab initio calculation
gives a band gap in good agreement with recent mea-
surements.

The QP self-energy can be obtained using the GW ap-
proximation [25], i.e., Σ = iGW , where G is the single-
particle propagator and W is the screened Coulomb in-
teraction. For doped materials, the self-energy can be
decomposed into four terms [4]

Σ = i(GintWint + δGWint +GintδW + δGδW )

= i(Σint +Σ1 +Σ2 +Σ3)
(1)

where the subscript “int”denotes the operator of the in-
trinsic (undoped) system and the δ terms capture the
full effects of the doping. The primary goal, then, is to
find the variation in dielectric screening δǫ−1 and hence
δW = δǫ−1v.

Dielectric function. For a 2D crystal, the dielec-
tric function ε can be calculated using the plane-
wave representation [23]: ǫGG′(q, ω) = δGG′ −

v2D(q+G)χGG′(q, ω), where v2D(q) is the 2D-truncated
Coulomb interaction [26, 27] and the polarizability χ is
obtained using the random phase approximation. For a
semiconductor with a sizeable band gap, the dynamical
matrix ǫ−1

GG′(q, ω) is often described via the generalized
plasmon-pole (GPP) model with a simple-pole function
that is based on the static limit and f -sum rule [23].

A full-frequency calculation of the dielectric function
may give the accurate band gap of doped 2D semiconduc-
tors. However, mimicking experimentally-accessible dop-
ing densities requires one to use an ultra fine sampling
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FIG. 1: (color online) (a) Static ǫ−1

GG′ with different combina-

tion of G-vectors. (b) Static ǫ−1

00′ with at various doping den-
sity n2D. b1 is the reciprocal vector along the Γ−M direction
of the first Brillouin zone. (c) Loss function Im[ǫ−1

00′(q, ω)] for
wave vectors of several high-symmetry q (see details in [28])
with a 0.4-eV smearing. (d) Loss function at low energies
featured by a shifting carrier-plasmon peak with a 0.03-eV
smearing.

scheme over the k-ω space to capture the carrier screen-
ing, making the simulation formidable for converged re-
sults. We are thus motivated to develop an efficient and
accurate ab initio model.
Our model begins with the static ǫ−1

GG′(q, ω = 0) of
doped monolayer MoS2. Fig. 1 (a) compares several
representative dielectric matrix elements of the undoped
system and the doped one at n2D = 3.4 × 1013cm−2.
Given the isotropy about small q [28], the elements are
only plotted along a single reciprocal primitive vector b1.
Remarkably, all of the matrix elements are remain nearly
unaffected (difference < 0.01) even at this high doping
level, except the “head”matrix element ǫ−1

00 (q, 0). In the
undoped case, ǫ−1

int,00(q, 0) approaches 1 [27, 29] as q → 0,
reflecting the absence of screening in a 2D semiconductor
at long-wavelengths. However, including doping causes
ǫ−1
00 (q, 0) immediately drops to 0 [29], due to metallic
screening. This result leads us to focus primarily on the
variation of the head matrix element δǫ−1

00 .

ǫ−1
00 (q, 0) is shown in Fig. 1 (b) at various doping den-

sities n2D. For increasing q, all of the dielectric functions
ǫ−1
00 (q, 0) at finite n2D first grow up linearly at the same
rate for small q, but then individually turn up towards,
and merge with, the intrinsic ǫ−1

int,00(q, 0). This behavior
is in accord with the 2D free electron gas (FEG) polariz-
ability [30], δχ00(q) = −m∗

2π [1−θ(q−2kF )
√

1− 4k2F /q
2],

for which the static doping effect only dominates at small
q and damps away rapidly beyond 2kF . The rapid damp-
ing profile suggests that the 2D doping effects are pre-
dominantly localized at the long-wavelength limit, due
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FIG. 2: (color online). Schematics of Re[ǫ−1

00
](q, ω) produced

by simple-pole functions, as indicated by colormap plot on
the q − ω plane. (a) Intrinsic case, (b) doped case, and (c)
GPP model for doped case.

to the low-doping densities that commonly occur and the
resulting large screening length.

Next, we turn to dynamical screening effects to treat
the carrier plasmon. Fig. 1 (c) presents the frequency-
dependence of the loss function Im[ǫ−1

00 (q, ω)] for various
q located at several high-symmetry points of the first
Brillouin zone (BZ). It can be seen that the intrinsic
and doped cases are almost identical (< 0.1%) except for
some spectral features at low frequencies (inset of Fig.
1(c)). A refined calculation (Fig. 1(d)) provides clear
evidence of a dispersive carrier plasmon, as manifested
by the peak in the loss function.

The above calculation reveals a key fact about the di-
electric function of a doped 2D system: the doping effects

are exclusively concentrated in the head element ǫ−1
00

(q, ω)
at long wavelengths and low frequencies; this is where the

carrier plasmon dominates. An overall picture is illus-
trated with schematics in Fig. 2. For an undoped semi-
conductor, only the optical plasmons arising from inter-
band transitions are present, which can be represented
by the single-pole function (Fig. 2(a)). For a doped 2D
semiconductor, a branch of low-energy carrier acoustic
plasmon emerges while the high-energy optical plasmon
remains intact (Fig. 2(b)). The GPP model no longer
accurately describes the dynamical effects in the system
when this new plasmon emerges; it exaggerates the dop-
ing effects in low-frequency region across a broader fre-
quency region due to the sum rule [23] (Fig. 2(c)).

Motivated by the simple plasmon structure in Fig.
1(d), we model the variation of the head matrix element
caused by doping as

δǫ−1
00 (q, ω) =

Ω2
d(q)

ω2 − ω2
d(q)

(2)

where the parameter Ωd(q) and ωd(q) are the plasmon-
pole strength and frequency, respectively. These are de-
termined by the following two constraints. First, the
plasmon energy ωd(q) can be extracted from a frequency-
dependent calculation. We find that ωd(q) converges
quickly with cutoff energyEG and occupied band number
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FIG. 3: (color online) Real and imaginary parts of the varia-
tion in the head matrix element, δǫ−1

00
, as obtained from full

ab initio calculations and our proposed PPM.

Nc. In our case, EG = 2 Ry and Nc = 4 are sufficient for
producing a converged ωd(q) [28]. Second, the plasmon-
pole strength is given by Ω2

d(q) = −δǫ−1
00 (q, ω = 0)ω2

d(q),
where δǫ−1 can be extracted from static calculations for
the intrinsic and doped systems (Fig. 1(a)). Although
a dense k-grid (120× 120× 1) and a typical EG (10Ry)
are needed, only a few conduction bands (Nc = 13) are
needed for convergence for calculations involving only
small q.
As shown in Fig. 3, this PPM satisfactorily repro-

duces the frequency-dependence of the head ǫ−1
00 that are

obtained from ab initio simulations, for various wave vec-
tor q. Our proposed calculation scheme focuses on the
head dielectric function at small wave vectors and low
frequencies, which circumvents the process of inverting
the dielectric matrix [31]. Ultimately, this model is a far
more efficient than the full-frequency scheme.
Self-Energy: We will calculate the self-energy of doped

2D semiconductors using the developed PPM. Following
the COHSEX approximation [23, 25], the self-energy Σnk

can be split into a screened-exchange (SX) term and a
Coulomb-hole (CH) term

Σnk
SX/CH(E) =

∑

n′q,GG′

ξn
′n

−G,−G′(k,−q)KSX/CH (3)

where the SX and CH kernels are defined as KSX =
−fn′k−qWGG′(q, E − εn′k−q) and KCH = W+

GG′(q, E −

εn′k−q), with W±(E) = ± 1
πP

±∞
∫

0

dE′ ImW (E)
E−E′

, which

only encompasses the positive (negative) poles in W .
ξnn

′

GG′(k,q) = M∗
nn′(k,q,G)Mnn′(k,q,G′) represents the

band structure effect, where Mnn′(k,q,G) is the plane-
wave matrix element[23, 29]. εnk and fnk are the single-
particle energy and occupation number of the state on
band n at k, respectively.
According to Eq. (1), we can obtain the total self-

energy term by term. The calculation of Σint and Σ1 is
straightforward [28, 32, 33]. The next two terms, Σ2 and
Σ3, are closely tied to the carrier screening δW , which can

be reproduced using our proposed PPM in Eq. (2). Due
to the aforementioned properties of the carrier plasmon,
these self-energy contributions can be simplified dramat-
ically by (i) limiting the band summation to n′ = n, (ii)
retaining only the term with G = G′ = 0, and (iii) set-
ting up a cutoff qc for the BZ integration.

Σ2 = iGintδW does not involve partial band filling, it
reads

Σnk
2 (E) ≃±

∫

q<qc

d2q

(2π)2
ξnn00 (k,−q)δW±

00(q, E − εnk−q)

(4)

where δW±

00(q, ω) = ±
Ω2

d(q)

2ωd(q)(ω ∓ ωd(q))
v2D(q) and ±

is for conduction/valence states. For fully filled valence
bands, the SX and CH term have been combined via
−W− = −W + W+. Σ3 = iδGδW is affected by the
carrier occupation and is solely related to the SX term

Σnk
3 (E) ≃ −

∫

q<qc

d2q

(2π)2
ξnn00 (k,−q)

×δfnk−qδW00(q, E − εnk−q)

(5)

This term is only significant on the doped band.

The energy dependence of the self-energy plays a cru-
cial role in determining the QP energies. For a state nk,
both Σint and Σ1 vary slowly near the single-particle en-
ergy εnk because the optical-plasmon feature occurs at
high-energies [28]. However, this is not the case for Σ2

and Σ3, on account of the emergence of the low-energy
carrier plasmon. Instead, they exhibit strongly nonlin-
ear behaviors near the εnk. Fig. 4 displays Σ2 and Σ3

for the valence band maximum (VBM) and conduction
band minimum (CBM) of n-doped monolayer MoS2 with
ω = E − εVBM and ω = E − εCBM, respectively, where
ω = 0 defines the on-shell energy. In Fig. 4 (a), ΣVBM

2

exhibits typical feature of Fano resonance, resulting from
the coupling of a quasi-electron with the dispersive car-
rier plasmon. With increasing carrier density n2D, the
resonance peak position systematically shifts left due to
a blue shift in the plasmon energy. The case of ΣCBM

2

is the reverse (Fig. 4 (b)) because it corresponds to a
quasi-hole state. Fig. 4 (c) shows the energy dependence
of Σ3. For electron doping, while ΣVBM

3 ≃ 0, ΣCBM
3 rises

as an asymmetric finite-width plateau. Finally, the to-
tal contribution of ΣCBM

2 +ΣCBM
3 is shown in Fig. 4(d),

which features a transition from a hole-like resonance to
an electron-like resonance.

Although the G0W0 approximation is reliable for many
intrinsic semiconductors, it is no longer appropriate for
treating a doped 2D system, for which the self-energy
becomes strongly nonlinear. This is manifested by Σ2

and Σ3. This nonlinear profile causes the QP solutions
to depend sensitively on the entry DFT calculation. One
needs to proceed with a self-consistent GW calculation
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FIG. 4: (color online) Self-energy contributions Σ2 =
iGintδW and Σ3 = iδGδW for both VBM and CBM at dif-
ferent doping levels. ω = 0 is set at the on-shell energy. The
arrows in (a) and (b) are used for guiding readers’ eyes for
the evolution of those resonant peaks under higher doping
densities.
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FIG. 5: (color online) (a) QP band gap evolution versus the
doping density. The sole effects of Σ1 and Σ2 on the band
gap are displayed by blue and red curves. The GPP band
gap is marked by black open circles. The band gap including
SO splitting and lattice dilation is marked by solid circles.
The inset is shown in logarithm scale of n2D. (b)(c) Different
many-body mechanisms for band gap shrinkage induced by
doping. They are quantified by on-shell self-energy correc-
tions in CBM (b) and VBM (c) for various doping densities.

[34, 35]. Fortunately, we find that the carrier-plasmon
resonance profile depends weakly on the band curva-
ture [28]. This suggests that the self-consistency can be
achieved by rigidly shifting [36] the whole resonance pro-
file along energy-axis such that the on-shell energy of Σ
coincides with the QP solution. This procedure is equiv-
alent to performing the GW0 approximation [21, 37].

Fig. 5 displays the evolution of the BGR and con-

tributing mechanisms versus n-doping density n2D in
monolayer MoS2. Here, the band gap is defined as
the energy difference between the original CBM and
the VBM. Meanwhile, A spin-orbit (SO) splitting of
∆SO = 140meV and the doping induced dilation of the
lattice constant have been included. Remarkably, the QP
band gap is strongly renormalized in the light-doping
regime; it drops dramatically from 2.66 eV to around
2.18 eV as n2D increases from 0 to 5.7× 1013cm−2 (Fig.
5(a)). The origin of this enhanced band-gap shrinkage is
due to the following mechanisms. First, a major contri-
bution comes from the carrier-occupation energy. At low
enough doping density, this contribution is dominated
by Σ1 = iδG · Wint, which is analogous to the negative

Fock exchange energy[30], except that the bare Coulomb
interaction v is replaced by Wint. For a n-doped sys-
tem, Σ1 roughly scales as −ǫ−1

intkF , which always lowers
the CBM (Fig. 5 (b)). Since the screening effect ǫint
is greatly depressed in low-dimensional semiconductors
[1, 2, 38], the band gap reduction from the carrier oc-
cupation, Σ1, is particularly large. Within the largest
n2D in our simulation, it can reach up to ∼ 500meV.
Similar magnitudes of carrier-occupation energy have
also been reported in doped semiconducting carbon nan-
otubes (CNTs) [3, 4]. Another important band-gap
shrinkage mechanism comes from the carrier screening
Σ2 = iGintδW . It weakens the electron-electron inter-
action and hence leads to a significant reduction in QP
band gap correction up to a few hundred meV (see Fig.
5 (b) and (c)).

As the doping density n2D increases, the QP band
gap slowly saturates at 2.18eV. This phenomenon results
from several factors. When n2D is high enough, the ex-
tra carrier screening can in turn reduce the carrier occu-
pation energy. At high n2D, the double-difference term
Σ3 = iδGδW becomes a prominent contribution (Fig. 5
(b)). For n-doping, it scales as −δǫ−1kF . Therefore, Σ3

varies in an opposite trend to Σ1 due to this minus sign
and is responsible for enlarging the band gap. Further-
more, the carrier screening effect Σ2 itself also exhibits a
saturation behavior (Fig. 5 (b) and (c)). With increas-
ing doping density, the carrier plasmon blueshifts signifi-
cantly and its effect on the QP state becomes weaker, as
evidenced from the departing Fano feature that is indi-
cated by arrows in Fig 4 (a) and (b). Finally, dimension-
ality effects also plays a role in the band gap evolution.
Our case differs substantially from that in CNTs, for
which the band gap shrinks almost linearly with the dop-
ing density [3]. In the 1D case, some major self-energy
contributions, like Σ1, still scale as −kF , but which is
proportional to the doping density. Meanwhile, the con-
ventional GPP method[23] significantly overestimate the
BGR, as shown in Fig. 5 (a).

A recent ARPES experiments [17] that directly ac-
cesses the band gap of doped monolayer MoSe2 can serve
to justify our ab initio approach. At the experimental
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doping level (5.3 × 1013cm−2) [17], our calculated QP
band gap reduction is 0.45eV. Additionally, this doping
density induces a lattice dilation of 0.6% that causes an
extra QP band gap reduction of 0.13eV. Finally, by in-
cluding a SO splitting of ∆SO = 180meV [17] and a band
gap reduction of 0.13eV from substrate screening [40],
we obtain a band gap of 1.59eV, which is in excellent
agreement with the measured value of 1.58eV.
In conclusion, we have developed and applied a highly

efficient generic computing scheme for calculating the
dielectric function of doped 2D semiconductors. We
thereby obtained the enhanced and nonlinear reduction
of the QP band gap over a wide range of doping densi-
ties unique to 2D systems. We also found that the band
gap drops to a certain limit at sufficiently high doping
densities because of a delicate competition between the
exchange and correlation energies. Our ab initio pre-
diction is in close agreement with recent measurements.
This enhanced BGR is crucial for explaining the excitonic
effects and trions observed in experiments.
We acknowledge valuable discussions with Giovanni

Vignale and Ryan Soklaski. This work is supported by
NSF DMR-1207141. The ground-state calculation is per-
formed with Quantum Espresso [39]. The intrinsic self-
energies are obtained by the BerkeleyGW code [29]. The
computational resources have been provided by Lonestar
of Teragrid at the Texas Advanced Computing Center
(TACC).
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