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Several experimental investigations have observed parity violation in nuclear systems—a conse-
quence of the weak force between quarks. We apply the 1/Nc expansion of QCD to the P-violating
T-conserving component of the nucleon-nucleon (NN) potential. We show there are two leading-
order operators, both of which affect ~pp scattering at order Nc. We find an additional four operators
at order N0

c sin2 θW and six at O(1/Nc). Pion exchange in the PV NN force is suppressed by 1/Nc

and sin2 θW , providing a quantitative explanation for its non-observation up to this time. The
large-Nc hierarchy of other PV NN force mechanisms is consistent with estimates of the couplings
in phenomenological models. The PV observed in ~pp scattering data is compatible with natural
values for the strong and weak coupling constants: there is no evidence of fine tuning.
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The strong-nuclear and electromagnetic forces play
the most prominent role in proton-proton (pp) scatter-
ing. There are also parity-violating (PV) pp interactions,
which manifest the presence of weak interactions between
the quarks inside each proton. Measurements of longitu-
dinal beam asymmetries ∼ 10−7 at Bonn [1], PSI [2],
and TRIUMF [3] demonstrate that PV nucleon-nucleon
(NN) forces exist. PV in NN systems is also probed via
an asymmetry in the reaction ~np → dγ [4, 5]. And ab
initio calculations of few-nucleon systems allow us to take
models of the PV NN force and predict, e.g., the longitu-
dinal asymmetry in 3He(~n, p)3H [6], which is soon to be
measured [7]. Nuclear parity violation is also observed
in, e.g., the radiative decay of the first excited state of
19F, but there theoretical uncertainties in the relation-
ship between the observable and the model of the PV
NN force are harder to quantify. Much work has gone
into constraining the PV NN force from a variety of nu-
clear experiments, see Refs. [8, 9] for recent reviews.

The prevailing paradigm in such analyses is based
on single-meson exchange between nucleons, most com-
monly in the framework developed by Desplanques,
Donoghue, and Holstein (DDH) [10]. The quantum num-
bers of the exchanged mesons determine the operator
structures that contribute, while operator coefficients
involve products of strong and weak meson-nucleon-
nucleon coupling constants. In this paper we show that
Standard Model (SM) couplings and the 1/Nc expansion
of QCD predict the operators, and the sizes of the associ-
ated coefficients, which appear in the PV NN potential.

An alternative framework—suitable for studying PV
at very low energies—that systematizes pioneering stud-
ies [11, 12] has recently emerged [13–15], but has, as
yet, been applied to far fewer experiments. The exten-

sion of chiral perturbation theory to few-nucleon systems,
χEFT [16] has also been invoked [17–21]. In χEFT the
one-pion-exchange piece of the PV NN force dominates,
with all other effects suppressed by two orders in the chi-
ral expansion.

One-pion exchange gives the long-distance parity-
conserving potential, and drives many of the properties
of light nuclei. But, thus far, experimental data show
no evidence for pion exchange in the PV NN force: only
upper bounds on its impact on observables have been ob-
tained. We will show that the smallness of the PV NN
operator associated with one-pion exchange is a conse-
quence of the large-Nc expansion.

Originally suggested by ’t Hooft [22], this technique
notes that QCD has a “hidden”, perhaps small, param-
eter in 1/Nc. Multiple simplifications of QCD occur in
the limit Nc → ∞. In particular, the expansion in powers
of 1/Nc provides insights about baryons [23, 24]. In the
context of nuclear forces the 1/Nc expansion was used
to study the NN potential [25, 26]. These works ana-
lyzed the NN potential for momenta of order N0

c , i.e.,
p ∼ ΛQCD, and found that it is an expansion in 1/N2

c .
This hierarchy between different contributions to the NN
potential is roughly borne out in the Nijm93 [27] NN
potential. This analysis was extended to the 3N poten-
tial [28]; here we tackle the PV component of the NN
force. Some of our results have been obtained within
the chiral soliton model [29–31], or from consistency re-
lations for PV pion-nucleon scattering [32]. But a model-
independent derivation of all pertinent scalings and com-
parison with experimental data and phenomenological
potentials appears here for the first time.

The fact that sin2 θW ≈ 0.23 [33] is key to the hierarchy
of PV NN operators. The SM effective Lagrangian for the
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PV four-quark operators involving u and d quarks [34] is:

Leff
4q = −GF√

2
cos2 θC

∑

a=1,2

(

V a
µ −Aa

µ

)2

− GF√
2

(

cos 2θW V 3
µ −A3

µ − 2 sin2 θW Iµ

)2

=
√
2GF

{

cos2 θC
∑

a=1,2

V a
µ Aµa + cos 2θW V 3

µ Aµ3

−2 sin2 θW Iµ A
µ3
}

+ · · · , (1)

where we kept only the PV terms. Here GF = 1.16 ×
10−5 GeV−2, cos2 θC = 0.946 and we dropped Cabibbo
suppressed terms. The currents are V a

µ = 1
2
q̄ γµτ

aq,

Aa
µ = 1

2
q̄ γµγ

5τaq and Iµ = 1
6
q̄ γµq respectively. Im-

portantly, the factor sin2 θW accompanies the product
of isoscalar and axial currents, which is the only source
of ∆I = 1 operators. ∆I = 0 and ∆I = 2 operators have
pre-factors of O(1). Running from the Z0-mass down
to the strong scale Λχ ∼ 1 GeV does not significantly
modify this hierarchy [35, 36].
Now we estimate the NN matrix elements of quark

operators in Eq. (1) using the Hartree expansion for the
nuclear Hamiltonian in the large-Nc limit [26, 37]

H = Nc

∑

s,t,u

vstu

(

S

Nc

)s (
I

Nc

)t (
G

Nc

)u

. (2)

The explicit factors of 1/Nc ensure that an m-body inter-
action scales as 1/Nm−1

c [38]. The coefficients are O(1)
functions of the momenta. We take a quark basis for the
operators:

Si = q†
σi

2
q, Ia = q†

τa

2
q, Gia = q†

σiτa

4
q , (3)

which generate an SU(4) algebra. We wish to take
their matrix elements in the |NN〉 piece of the hadronic
Hilbert space. S, I, G in Eq. (2) can have any nucleon
index; we denote by Oα the nucleon (α = 1, 2) on which
they act. Products of operators acting on the same nu-
cleon are reduced to a single operator using relations for
powers of S, I, G [28, 37]. Matrix elements of S and I
between nucleon states are O(1), while matrix elements
of G are O(Nc). The mass of the nucleon, mN , scales as
Nc. This implies that any leading-order (LO) large-Nc

NN potential is (modulo exchange diagrams) local: it is
a function of the relative co-ordinate r; or, equivalently,
in momentum space, depends solely on the difference of
final- and initial-state relative momenta, p− ≡ p′ − p.
The combination p+ ≡ p′ + p can appear only via rela-
tivistic corrections, and so its occurrence is always sup-
pressed by a factor of 1/Nc. Both p− and p+ are parity
odd, with p− (p+) being even (odd) under time reversal.
We now use these momentum operators to counterbal-

ance the spin-flavor structures obtained after using the
reduction rules in Eq. (2). We do this to obtain a Hamil-
tonian that is a rotational scalar, time-reversal even, and
parity odd. As to its isospin transformation properties,
we have already seen that ∆I = 0, 1, 2 operators arise in
the SM. At the hadronic level the leading-in-Nc operators
are:

UNc

PV = Nc

(

U1
P (p

2
−)

[

p− · (σ1 × σ2) τ1 · τ2
]

+U2
P (p

2
−)

[

p− · (σ1 × σ2) [τ1 τ2]
zz
2

]

)

, (4)

where [. . . ]
2
denotes a symmetric and traceless rank-two

tensor. These mediate ∆I = 0, 2 transitions. Since p−

is O(1) an arbitrary function of p2
− can appear as a pre-

factor without changing the Nc order of any contribution.
The four O(N0

c sin2 θW ) operators—all ∆I = 1—are:

U
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c
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2
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+U5
P (p

2
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z
]
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i p

j
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1 σ
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. (5)

At O(1/Nc) there are a number of additional ∆I = 0, 2 operators that arise:

U
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c
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c
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]

+U9
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+ U11
P (p2
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zz
2

]

)

,(6)

while at O(1/N2
c ) corrections to the coefficient functions

in Eq. (5) and additional ∆I = 1 operators appear. Note
that the 1/Nc expansion says very little about the coef-
ficient functions U1

P –U
11
P and U1

D; the only constraint on
them is that they should be O(1).
Within each isospin sector the expansion is thus in

1/N2
c , as for the strong NN and NNN force. Since ∆I = 1

operators are suppressed by sin2 θW and 1/Nc the two

operators in Eq. (4) give the entire PV NN force up
to corrections that are formally of relative order 1/N2

c ,
sin2 θW /Nc. Below we will argue, though, that the nu-
merical suppression is not quite the ≈ 10% this implies.
An expansion in momenta would reduce Eqs. (4)–(6)

to the five operators that describe the S-P transitions
[11, 13, 39]. Here we do not take the low-energy limit as
we want to compare with the full DDH potential. Fur-
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thermore, at the 221 MeV energy of the TRIUMF ~pp
experiment that we also seek to describe, an expansion
in powers of momenta is not trustworthy.
We now compare our result to the PV NN potential of

DDH. The relevant expressions can be found in [10] and
[9]. The one-meson-exchange diagrams from the weak
and strong meson-nucleon Hamiltonians given there yield
the DDH potential as a set of operators, each of which
is multiplied by one strong and one weak meson-nucleon-
nucleon coupling. Up to O(N0

c sin2 θW ) only one spin-
flavor structure is produced by the 1/Nc analysis that
does not appear in the DDH potential. It is the operator
multiplied by the coefficient function U1

D and corresponds
to a tensor constructed from L and p− coupled to the
rank-two spin tensor. This structure is not generated
straightforwardly in the meson-exchange picture.
The rest of the DDH structures can each be matched to

one structure in the LO or O(N0
c sin2 θW ),O(1/Nc) po-

tentials. DDH made a prediction for the strength of these
operators based on standard values for the strong meson-
nucleon-nucleon couplings and estimates of the “best val-
ues” for the weak couplings. We will use these weak-
coupling estimates as our point of comparison (but see
Ref. [40]). In order to extract values for the weak cou-
plings from our 1/Nc analysis, we recall the Nc-scaling
rule of the strong couplings from Ref. [26]:

gω ∼
√

Nc , gρ ∼ 1√
Nc

, ξV ∼ Nc , ξS ∼ 1

Nc
. (7)

We count the pion’s coupling as ḡπNN ∼
√
Nc. This,

together with the Goldberger-Treiman relation, means
that the pseudoscalar πNN coupling which appears in

the DDH potential, gπNN = mN

Λχ
ḡπNN , scales as N

3/2
c .

In a similar vein, we replaced DDH’s parameters χV,S

by mNξV,S/Λχ and h1′

ρ by mNh1′

ρ /Λχ, so that there are
no spurious factors of Nc appearing in the coefficients of
operators via the nucleon mass. Λχ ∼ 1 GeV suppresses
higher dimensional operators and is independent of Nc.
We then extract the Nc and sin2 θW scalings of the

weak couplings in DDH potential as:

h0
ρ ∼

√

Nc , h2
ρ ∼

√

Nc ,

h1′

ρ

sin2 θW
.

√

Nc ,
h1
ω

sin2 θW
∼

√

Nc ,

h1
ρ

sin2 θW
.

1√
Nc

,
h1
π

sin2 θW
.

1√
Nc

, h0
ω ∼ 1√

Nc

. (8)

Since they arise from the Iµ A
µ3 product in the effective

four-quark Lagrangian, the ∆I = 1 couplings must all
include a factor of sin2 θW . The bounds on the scalings of
h1
ρ, h

1′

ρ , h1
π follow from requiring that the large-Nc scaling

is not violated, while the scalings of h0,2
ρ , h0,1

ω are needed

in order that the U ′s in Eqs. (4,5,6) scale as O(N0
c ).

Some of these results in Eq. (8) were previously derived
in soliton models [29–31]. And Ref. [32] computed the
large-Nc scaling of h1

π, but did not account for its sin2 θW
suppression.
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FIG. 1. (Color online) The hierarchy of weak couplings for
the DDH best values [10], re-scaled by the average of h2

ρ and

h̃1

ω. The bands show the large-Nc predictions, with their as-
sociated O(1/Nc) error bars. The tildes on couplings indicate
that both the Nc-prediction and the DDH best value have
been divided by sin2 θW . The orange (green) points are cou-
plings which are O(

√
Nc) (O(1/

√
Nc)). Error bars indicate

the DDH “reasonable ranges”.

The two operators in Eq. (4) give the entire LO PV
NN potential. When written in terms of the DDH cou-
plings they are proportional to gρh

0,2
ρ χV /mN . Taking

the product of all scalings in this expression verifies that
the potential in Eq. (4) is O(Nc), but also shows that
one of the factors of Nc is associated with the factor of
mN/Λχ ∼ 1 that (implicitly) occurs in the DDH coupling
χV . This effectively demotes the LO piece of the PV NN
potential to a numerical size typical of a O(N0

c ) contri-
bution. We therefore conclude that the two operators in
Eq. (4) determine the parity-violating NN force up to ≈
30% corrections.

Although the DDH ranges are large, the preferred val-
ues fall in the relatively narrow bands predicted by the
1/Nc hierarchy, except for h1′

ρ and h1
π, see Fig. 1. No-

tably, the two LO operators are associated with the
largest couplings, h0

ρ, h
2
ρ. The DDH best value for the

coupling h1
ω is also within 30% of the natural value

once the sin2 θW suppression is taken into account. The
sin2 θW /Nc suppressed couplings include h1

π. This is in
contrast to DDH, who have a h1

π glaringly larger than
the large-Nc prediction. A much smaller h1

π is found in
soliton models [29, 30], and appears to be borne out by
experiment (see, e.g. Fig. 3 in Ref. [9]). Lastly, Ref. [41]

used the quark model to argue that the coupling h1′

ρ was
small, and as a consequence it has been neglected in many
subsequent analyses. In contrast, large-Nc gives no rea-
son that this coupling is any less important than, say, h1

π;
both generate the operator structure (σ1 +σ2) (τ1 × τ2)

z

in Eq. (5) and consistency with the N0
c scaling of U4

P only

requires that at least one of h1′

ρ , h1
π saturates the bounds

given in Eq. (8).

None of this, though, is a comparison at the level of
observables. As already alluded to, there are many prob-
lems with the extraction of weak meson-nucleon-nucleon
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FIG. 2. (Color online) The ellipse gives the 90% C.L. con-
straint from experiment [1–3] on the combinations of cou-
plings ASP and APD (in units of 10−7) via the analysis of
Refs. [9, 42]. The black point corresponds to the DDH best
value and the red point is obtained from naturalness and our
large-Nc analysis. The blue region is found by varying the
weak and strong couplings by 30% around their natural val-
ues. The smaller yellow region is obtained by only varying
the weak couplings by 30%.

couplings from data, e.g. extracted weak coupling con-
stants depend on the strong coupling constants used [9].
Constraining the products of weak and strong couplings
from experiment may be a better choice. Therefore
we conclude our discussion by considering the domi-
nant combinations gρh

0
ρ, gρh

2
ρ, gωh

0
ω ∼ O(1) and gωh

1
ω ∼

O(Nc sin
2 θW ) asking what they predict for experiments.

All four contribute to pp scattering. The ~pp asymmetry
has been measured at 15 [1], 45 [2], and 221 MeV [3].
In the main, the first two experiments constrain the PV-
induced mixing between 1S0- and

3P0-waves, while the
third constrains mixing between 3P2- and

1D2-waves. In
plane-wave Born approximation the information can be
parameterized by ASP and APD [9, 42], the pertinent
combinations of coupling constants governing these mix-
ings. In the DDH approach they are:

ASP ≡ gρh
pp
ρ (2 + χV ) + gωh

pp
ω (2 + χS),

APD ≡ gρh
pp
ρ χV + gωh

pp
ω χS , (9)

with hpp
M the combination of ∆I = 0, 1, 2 couplings rel-

evant for pp scattering 1. The data from Refs. [1–3]
were analyzed in Ref. [42], resulting in the constraints
on ASP and APD shown in Fig. 2. (See also the re-
cent χEFT analysis [20, 21].) While the variables for the
ellipse are motivated using plane-wave Born approxima-
tion, the calculation is not done that way. It accounts for
all initial- and final-state (strong) pp interactions, via a
CD-Bonn potential calculation of the corresponding wave

functions [43].
To make a prediction for ASP and APD we take

GF fπΛχ ∼ 1.0 × 10−6 (with fπ = 92.4 MeV ∼√
Nc) as the naturalness estimate for the LO weak

couplings h0,2
ρ . Assuming a natural value for

gω ≈ 4π [44], we determine other couplings by the
Nc, sin2 θW scalings of Eqs. (7) and (8), yielding
{−1.0 ,−0.077 ,−1.0 ,−0.33 ,−0.23}× 10−6 for the weak
couplings {h0

ρ, h
1
ρ, h

2
ρ, h

0
ω, h

1
ω} and {12. , 4.0 ,−0.33 , 3.0}

for the strong couplings {gω, gρ, ξS , ξV }. This is denoted
by the red point in Fig. 2. All nine couplings should
be assigned a 30% error, due to omitted terms in the
1/Nc expansion. Uncorrelated variation over this range
produces the blue shaded area in the figure. The yellow
shaded area is the result found from solely varying the
five weak couplings. The prediction for ASP and APD

from large-Nc and naturalness is thus consistent with the
constraints extracted in Ref. [42] within the combined
theoretical and experimental uncertainties. It shows no
evidence of fine tuning. The black dot is obtained with
DDH “best values” for the weak and strong couplings.
Those values are consistent with large-Nc and natural-
ness, but such consistency will not occur in observables
where h1

π contributes.
The 1/Nc expansion for hadronic matrix elements, su-

perimposed on suppressions by factors of sin2 θW pre-
dicted by the Standard Model, provides a new bench-
mark for PV NN couplings. This approach not only es-
timates the couplings, it also gives plausible ranges for
them based on 1/Nc scaling. The results for the only
non-zero measurements of parity-violating effects in the
NN system are consistent with data. It also naturally
predicts a small h1

π: |h1
π| . (0.8±0.3)×10−7 in agreement

with the bound obtained from 18F experiments [45–50],
|h1

π| . 1.3× 10−7. It is also consistent with the first lat-
tice calculation of h1

π [51]. The 1/Nc expansion thus ex-
plains the otherwise puzzling failure of pion effects to yet
manifest themselves in hadronic parity-violation experi-
ments. Finally, it also suggests a new ∆I = 1 spin-flavor
structure (U1

D) at O(N0
c sin2 θW ) should be included in

analyses that examine the subleading piece of the NN
force generated by the weak interaction.
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1 Note that two leading couplings h0
ρ and h2

ρ affect the ~pp asym-

metry only via this combination. A lattice QCD calculation of
the iso-tensor piece of the PV NN interaction would help break

this degeneracy.
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