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We present the full analytic result for the three-loop angle-dependent cusp anomalous dimension
in QCD. With this result, infrared divergences of planar scattering processes with massive particles
can be predicted to that order. Moreover, we define a closely related quantity in terms of an effective
coupling defined by the light-like cusp anomalous dimension. We find evidence that this quantity
is universal for any gauge theory, and use this observation to predict the non-planar nf -dependent
terms of the four-loop cusp anomalous dimension.
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Understanding the structure of soft and collinear di-
vergences is of great theoretical interest in quantum field
theory. It is also relevant for phenomenological appli-
cations such as the production of heavy particles at the
LHC, where effects from soft gluon radiation need to be
resummed in order to improve theoretical predictions.

It is well known that the infrared (or long-distance)
asymptotics of scattering amplitudes is described by cor-
relation functions of Wilson lines pointing along the mo-
menta of the scattered particles [1, 2]. The latter satisfy
evolution equations with the corresponding anomalous
dimension being in general a matrix in color space. In
the planar limit, this matrix is expressed in terms of the
two-line cusp anomalous dimension [3]. The two-loop re-
sult for this fundamental quantity has been known for
more than 25 years [4], see also ref. [5]. Here we report
on the full result for the cusp anomalous dimension in
QCD at three loops.

To compute the cusp anomalous dimension, we con-
sider the vacuum expectation value of the Wilson line
operator

W =
1

N
〈0| tr

[
P exp

(
i

∮
C

dx ·A(x)

)]
|0〉 , (1)

with Aµ(x) = Aaµ(x)T a and T a being the generators
of the fundamental representation of the SU(N) gauge
group. Here the integration contour C is formed by two
segments along directions vµ1 and vµ2 (with v21 = v22 = 1),
with (Euclidean space) cusp angle φ,

cosφ = v1 · v2 , (2)

cf. Fig. 1. Perturbative corrections to the Wilson loop (1)
contain both ultraviolet (cusp) and infrared divergences.
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FIG. 1: Sample Feynman diagram producing a contribution
to the three-loop cusp anomalous dimension in QCD. Thick
lines denote two semi-infinite segments forming a cusp of angle
φ, and wavy lines represent gauge fields.

We employ dimensional regularization with D = 4 − 2ε
to regularize the former and introduce an infrared cut-off
using the heavy quark effective theory (HQET) frame-
work. The cusp anomalous dimension Γcusp is extracted
as the residue at the simple pole 1/ε in the corresponding
renormalization factor.

It depends on the cusp angle φ, the strong coupling
constant αs = g2YM/(4π), and on SU(N) color factors. It
is convenient to introduce the complex variable

x = eiφ , 2 cosφ = x+ 1/x . (3)

In Euclidean space |x| = 1, whereas for Minkowskian an-
gles φ = iθ (with θ real) the variable x can take arbitrary
nonnegative values. Due to the symmetry x→ 1/x of the
definition (3), we can assume 0 < x < 1 without loss of
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generality.
We chose to perform the calculation in momentum

space. We generated all Feynman diagrams contributing
to W up to three loops, in an arbitrary covariant gauge.
This was done with the help of the computer programs
QGRAF and FORM [6]. Using integration by parts re-
lations [7], we found that a total of 71 master integrals
was required. We derived differential equations for them
in the complex variable x defined in (3). Switching to a

basis of master integrals ~f(x, ε) as suggested in ref. [8],
we found the expected canonical form of the differential
equations [26],

∂x ~f(x, ε) = ε

[
a

x
+

b

x+ 1
+

c

x− 1

]
~f(x, ε) , (4)

with constant (x− and ε−independent) matrices a, b, c.
Eq. (4) has four regular singular points in x, namely

0, 1,−1, and ∞. Thanks to the x → 1/x symmetry of
the definition (3), only the first three are independent.
They correspond, in turn, to the light-like limit (infinite
Minkowski angle), to the zero angle limit, and to the
antiparallel lines limit. Requiring that the integrals be
nonsingular in the straight-line case x = 1 allowed us to
fix all except one boundary conditions, and we obtained
the remaining one from ref. [9].

It follows from (4) that the solution for ~f in the
ε−expansion can be written in terms of iterated integrals
with integration kernels dx/x, dx/(x−1), dx/(x+1). The
latter integrals are known as harmonic polylogarithms
Hn1...nk

(x) [10]. The indices ni can take values 0, 1,−1,
corresponding to the three integration kernels, respec-
tively.

To express our results up to three loops, we introduce
the following functions [27],

A1(x) =ξ
1

2
H1(y) , A2(x) =

[
π2

3
+

1

2
H1,1(y)

]
+ ξ

[
−H0,1(y)− 1

2
H1,1(y)

]
,

A3(x) = ξ

[
−π

2

6
H1(y)− 1

4
H1,1,1(y)

]
+ ξ2

[
1

2
H1,0,1(y) +

1

4
H1,1,1(y)

]
,

A4(x) =

[
−π

2

6
H1,1(y)− 1

4
H1,1,1,1(y)

]
+

+ ξ

[
π2

3
H0,1(y) +

π2

6
H1,1(y) + 2H1,1,0,1(y) +

3

2
H0,1,1,1(y) +

7

4
H1,1,1,1(y) + 3ζ3H1(y)

]
+ ξ2

[
−2H1,0,0,1(y)− 2H0,1,0,1(y)− 2H1,1,0,1(y)−H1,0,1,1(y)−H0,1,1,1(y)− 3

2
H1,1,1,1(y)

]
,

A5(x) = ξ

[
π4

12
H1(y) +

π2

4
H1,1,1(y) +

5

8
H1,1,1,1,1(y)

]
+ ξ2

[
−π

2

6
H1,0,1(y)− π2

3
H0,1,1(y)− π2

4
H1,1,1(y)

−H1,1,1,0,1(y)− 3

4
H1,0,1,1,1(y)−H0,1,1,1,1(y)− 11

8
H1,1,1,1,1(y)− 3

2
ζ3H1,1(y)

]
+ ξ3

[
H1,1,0,0,1(y) +H1,0,1,0,1(y) +H1,1,1,0,1(y) +

1

2
H1,1,0,1,1(y) +

1

2
H1,0,1,1,1(y) +

3

4
H1,1,1,1,1(y)

]
,

B3(x) =

[
−H1,0,1(y) +

1

2
H0,1,1(y)− 1

4
H1,1,1(y)

]
+ ξ

[
2H0,0,1(y) +H1,0,1(y) +H0,1,1(y) +

1

4
H1,1,1(y)

]
,

B5(x) =
x

1− x2
[
− π4

60
H−1(x)− π4

60
H1(x)− 4H−1,0,−1,0,0(x) + 4H−1,0,1,0,0(x)− 4H1,0,−1,0,0(x)

+ 4H1,0,1,0,0(x) + 4H−1,0,0,0,0(x) + 4H1,0,0,0,0(x) + 2ζ3H−1,0(x) + 2ζ3H1,0(x)
]
,

(5)

where ξ = (1+x2)/(1−x2) and y = 1−x2. The subscript of A indicates the (transcendental) weight of the functions.
Moreover, we introduce the abbreviation Ãi = Ai(x)−Ai(1), and similarly for B̃i.

Performing the three-loop computation, we reproduced
the expected structure of UV divergences of W in the MS
scheme, as well as the HQET wavefunction renormaliza-
tion [9], for arbitrary values of the gauge parameter in
the covariant gauge. As yet another check, the depen-

dence on the gauge parameter disappeared for the cusp
anomalous dimension.
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Let us write the expansion in the coupling constant as

Γcusp(αs, x) =
∑
k≥1

(αs
π

)k
Γ(k)
cusp(x) . (6)

The previously known one- and two-loop [4] results can
be written as

Γ(1)
cusp = CF Ã1 , (7)

Γ(2)
cusp =

1

2
CFCA

[
Ã3 + Ã2

]
+

(
67

36
CFCA −

5

9
CFTFnf

)
Ã1 . (8)

At three loops we find

Γ(3)
cusp = c1 CFC

2
A + c2 CF (TFnf )2

+ c3 C
2
FTFnf + c4 CFCATFnf ,

(9)

with

c1 =
1

4

[
Ã5 + Ã4 + B̃5 + B̃3

]
+

67

36
Ã3 +

29

18
Ã2 +

(
245

96
+

11

24
ζ3

)
Ã1 , (10)

c2 = − 1

27
Ã1 , c3 =

(
ζ3 −

55

48

)
Ã1 , (11)

c4 = − 5

9

[
Ã3 + Ã2

]
− 1

6

(
7ζ3 +

209

36

)
Ã1 . (12)

Here CF = (N2−1)/(2N) and CA = N are the quadratic
Casimir operators of the SU(N) gauge group in the fun-
damental and adjoint representation, respectively, nf is
the number of quark flavors, and TF = 1/2.

The following comments are in order. The cusp anoma-
lous dimension has a branch cut for x lying on the neg-
ative real axis. The results given in (9) are valid for
0 < x < 1 and can be analytically continued to other
regions according to this choice of branch cuts [28].

The leading n2f term in (9) is in agreement with the
known result [12]. We reported on the nf -dependent part
of (9) in [13]. The expression for the coefficient c1 is new.

As a check of our result, we can consider Minkowskian
angles and take the light-like limit, x = e−θ with θ →∞,
of eq. (9), where one expects the behavior [14]

Γcusp(αs, x)
x→0
= K(αs) log(1/x) +O(x0) , (13)

with K(αs) being the light-like cusp anomalous dimen-

sion. To three loops, it is given by [15]

K(1) =CF ,

K(2) =CACF

(
67

36
− π2

12

)
− 5

9
nfTFCF ,

K(3) =C2
ACF

(
245

96
− 67π2

216
+

11π4

720
+

11

24
ζ3

)
+ CACFnfTF

(
−209

216
+

5π2

54
− 7

6
ζ3

)
+ C2

FnfTF

(
ζ3 −

55

48

)
− 1

27
CF (nfTF )2 ,

(14)

where K(αs) =
∑
m≥1(αs/π)mK(m). We found perfect

agreement for all terms.
Finally, if the conformal symmetry of (massless) QCD

were not broken, one would expect that the cusp anoma-
lous dimension should be related in the antiparallel lines
limit φ = π − δ, δ → 0, to the quark-antiquark potential
[16] (at one loop order lower compared to Γcusp). Start-
ing from eq. (9) we indeed find perfect agreement with
the result quoted in the second ref. of [17], up to confor-
mal symmetry breaking terms proportional to the QCD
β function.

Our result for the cusp anomalous dimension is valid
in the MS (dimensional regularisation) scheme. Going
to the DR (dimensional reduction) scheme amounts to a
finite renormalisation of the coupling constant. We can
introduce a quantity Ω which is the same in both schemes
by switching from αs to an “effective coupling” a,

Ω(a, x) := Γcusp(αs, x) , a := π/CFK(αs) , (15)

where Γcusp and K(αs) are evaluated in the same scheme
(and for the same theory). By construction, Ω has the
universal limit

Ω(a, x)
x→0
=

a

π
CF log(1/x) +O(x0) , (16)

as one can easily verify by comparing to eq. (13).
Using the results up to three loops given in eqs. (7),

(8), (9) and (14), and expanding both sides of the first
relation in (15) to third order in αs, we find

Ω(a, x) =
a

π
CF Ã1 +

( a
π

)2 CACF
2

[
Ã3 + Ã2 +

π2

6
Ã1

]
+
( a
π

)3 CFC
2
A

4

[
Ã5 + Ã4 − Ã2 + B̃5 + B̃3 (17)

+
π2

3
Ã3 +

π2

3
Ã2 −

π4

180
Ã1

]
+O(a4) .

Remarkably, this quantity is independent of nf to three
loops! Comparing to eq. (15) we see that this means

that e.g. all nf dependent terms in Γ
(3)
cusp are generated

from lower-loop terms, when expanding K(αs) in αs.
In Fig. 2 we plot the one-, two- and three-loop coef-

ficients of Ω in an expansion of a/π, for Minkowskian
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FIG. 2: θ dependence of the cusp anomalous dimension
Ω(a, e−θ) at one (solid), two (dashed), and three (dotted)
loops.

angles θ, i.e. x = e−θ for the range θ ∈ [0, 4], and with
the number of colors set to N = 3. Note that the nf -
dependence in QCD can be obtained from eq. (15), and
amounts to a rescaling of the coupling. At large θ, the
one-loop contribution displays the linear behavior of eq.
(16), while the two- and three-loop contributions go to
a constant, as expected. In the small angle region, we
have,

Ω(a, e−θ) = CF

[( a
π

) 1

3
+
( a
π

)2 CA
4

(
1− π2

9

)
(18)

+
( a
π

)3 C2
A

12

(
−5

3
− π2

6
+
π4

20
− ζ3

)
+O(a4)

]
θ2 +O(θ4) .

The observed nf -independence of Ω(a, x) leads us to
conjecture that the latter quantity is universal in gauge
theories, i.e. independent of the specific particle content
of the theory. Assuming this conjecture leads to a num-
ber of non-trivial predictions.

First, let us recall the known value for K in N = 4
super Yang-Mills (in the DR scheme) [18],

KN=4(αs) =CF

[(αs
π

)
− π2

12
CA

(αs
π

)2
+

11

720
π4C2

A

(αs
π

)3
+O(α4

s)

]
.

(19)

Plugging this formula and the result for Ω given in eq.
(17) into eq. (15) then gives the previously unknown
three-loop result for the cusp anomalous dimension for
the Wilson loop operator of eq. (1) in that theory,

ΓN=4(αs, x) =
αs
π
CF Ã1 +

CACF
2

(αs
π

)2 [
Ã3 + Ã2

]
+
CFC

2
A

4

(αs
π

)3 [
Ã5 + Ã4 − Ã2 + B̃5 + B̃3

]
+O(α4

s) .

(20)

The two-loop terms agree with ref. [13]. As a test of the
three-loop prediction, we take the antiparallel lines limit
and obtain

ΓN=4(αs, x)
δ→0
= − CFαs

δ

{
1−

(αs
π

)
CA

+
(αs
π

)2
C2
A

[
5

4
+
π2

4
− π4

64

]
+O(α3

s)

}
+O(δ0) ,

(21)

as expected from the direct calculation of the quark anti-
quark potential [19].

Second, the conjecture of the nf -independence of Ω
can be used to predict the form of the non-planar nf
corrections that can first appear at four loops. The lat-
ter involve quartic Casimir operators of SU(N), whose
contribution we abbreviate by C4 = dabcdF dabcdF /NA =
(18 − 6N2 + N4)/(96N2) (with NA the number of the
SU(N) generators) [20]. Consider a term in Γcusp(αs, x)
of the form nf (αs/π)4g(x)CFC4/64, for some g(x). As-
suming that Ω defined in eq. (15) is independent of
nf then implies g(x) = g0Ã1. Moreover, we can de-
termine g0 by comparing to the antiparallel lines limit.
The expected relation to the known quark antiquark po-
tential computed (numerically) in ref. [21] then yields
g0 = − 56.83(1).

In conclusion, we presented the full three-loop result
for the cusp anomalous dimension in QCD. The latter al-
lows to predict the infrared divergent part of planar scat-
tering amplitudes of massive particles in QCD to that
order. Moreover, our result can be applied to reduce
theoretical uncertainties both in describing the scale de-
pendence of heavy meson form factors [1, 2] and in com-
puting cross sections of top-antitop pair production in
electron-positron annihilation and in hadronic collisions
[5, 22] (for a recent review see [23]).

We observed that the result has a surprisingly simple
dependence on the number of quark flavors nf , which
led us to define a quantity Ω, independent of nf to three
loops. If the latter is the same in any gauge theory it
could be studied using powerful integrability techniques
that have been developed in N = 4 super Yang-Mills, see
[24] for more details.
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