
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Neutral Naturalness from Orbifold Higgs Models
Nathaniel Craig, Simon Knapen, and Pietro Longhi

Phys. Rev. Lett. 114, 061803 — Published 13 February 2015
DOI: 10.1103/PhysRevLett.114.061803

http://dx.doi.org/10.1103/PhysRevLett.114.061803


RU-NHETC-2014-15

Neutral Naturalness from the Orbifold Higgs

Nathaniel Craig,1, 2, ∗ Simon Knapen,2, 3, 4, † and Pietro Longhi2, ‡

1Department of Physics, University of California, Santa Barbara, CA 93106
2 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854

3Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720
4Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: January 5, 2015)

We present a general class of natural theories in which the Higgs is a pseudo-goldstone boson in an
orbifolded gauge theory. The symmetry protecting the Higgs at low energies is an accidental global
symmetry of the quadratic action, rather than a full continuous symmetry. The lightest degrees of
freedom protecting the weak scale carry no Standard Model (SM) quantum numbers and interact
with visible matter principally through the Higgs portal. This opens the door to the systematic
study of “neutral naturalness”: natural theories with SM-neutral states that are as yet untested by
the LHC.

INTRODUCTION

The discovery of an apparently elementary Standard
Model (SM)-like Higgs at the Large Hadron Collider
(LHC) [1, 2] has heightened the urgency of the hierarchy
problem, yet comprehensive null results in searches for
new physics have called the naturalness of the weak scale
increasingly into question. The tension between natural-
ness and null results is largely driven by a folk theorem
regarding top partners: In symmetry solutions to the
hierarchy problem, the symmetry protecting the Higgs
from sensitivity to high mass scales typically commutes
with the SM gauge group, giving rise to top partners
that are charged under QCD. The precise character of
the top partners may vary, ranging from scalar top part-
ners in the case of supersymmetry to vector-like fermionic
top partners in the case of global symmetries, but in ei-
ther case their QCD quantum numbers guarantee a large
production cross section at the LHC. Limits on these
top partners are now approaching 700-800 GeV for both
scalar and fermionic top partners [3–6], imperiling the
apparent naturalness of the weak scale. While there is
still room left for light colored top partners, the generic
reach of LHC limits has created substantial tension.

Before abandoning the naturalness principle, it is rea-
sonable to wonder whether all natural theories have been
systematically explored – and, in particular, whether
there are general classes of models preserving natural-
ness through symmetries for which the top partner folk
theorem does not apply. There is an encouraging proof of
principle – the twin Higgs model [7], for which the lowest-
lying degrees of freedom required for naturalness are neu-
tral under the SM – but it remains unclear whether this
is an isolated point in theory space or an example of a
generic phenomenon based on symmetries.

In this paper we identify an expansive class of new
theories that preserve the naturalness of the weak scale
without predicting new light degrees of freedom charged
under the Standard Model. We exploit the fact that the
correlation functions of orbifold daughter theories are

identical to those of the parent theory in the large-N
limit [8–12] [22]. The key observation is that orbifolds
of continuous symmetries may produce daughter theo-
ries featuring an accidental symmetry of the quadratic
action. As such, the Higgs can be identified as a pseudo-
goldstone boson of the spontaneously broken accidental
symmetry. Radiative stability is guaranteed by appropri-
ate pseudo-goldstone couplings to fermions charged un-
der gauge sectors other than the Standard Model.

We outline the essential framework of the orbifold
Higgs and provide several illuminating examples. Sur-
prisingly, we find that the twin Higgs model is the sim-
plest example of an orbifold Higgs, and the orbifold struc-
ture can explain all of the features required by a success-
ful twin Higgs model. In the interest of brevity, we leave
many technical details of the orbifold procedure and de-
tailed model-building to a companion paper [13].

ORBIFOLD FIELD THEORY

We begin by briefly reviewing the structure of field
theory orbifolds, as discussed in further detail in [12, 13].
To orbifold a parent symmetry G by a discrete group G,
we first embed G into G using the regular representation
embedding. We obtain the daughter theory by study-
ing how G transformations act on fields charged under G
and projecting out all states not invariant under those
transformations. Such orbifold daughter theories enjoy
the surprising property that their correlation functions
are identical to those of the parent theory in the large-N
limit [8–12].

As an example, consider a toy model consisting of
an SU(NΓ) parent gauge theory with a field H trans-
forming as a bi-fundamental under the gauge symme-
try and an SU(Γ) flavor symmetry. Taking the orbifold
by ZΓ gives rise to a daughter theory with gauge group
SU(N)Γ × U(1)Γ−1, while the parent bi-fundamental H
decomposes into Γ SU(N) fundamentals, one charged un-
der each SU(N) factor of the daughter symmetry. More
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generally, when orbifolding by a Γ-dimensional discrete
group G with number of irreducible representations nG ,
the parent symmetry is broken into a product of daughter
symmetries of relative dimension dα:

SU(ΓN)→

(
nG∏
α=1

SU(dαN)

)
× (U(1))

nG−1
(1)

where the dα factors and decomposition of matter mul-
tiplets both depend in detail on the group G. For our
purposes, it is critical to understand the scaling of cou-
plings in the daughter theory relative to the parent sym-
metry, which are dictated by the orbifold projection and
canonical normalization of daughter states. Specifically,
gauge couplings gα and yukawa couplings yα of a daugh-
ter theory sector with gauge group SU(dαN) are rescaled
relative to the parent couplings g, y by gα = g/

√
dα and

yα = y/
√
dα, respectively, while mass terms mα and

quartic couplings λα are not rescaled, mα = m and
λα = λ [12, 13]. This will play a crucial role in the
radiative stability of orbifold Higgs models.

THE ORBIFOLD HIGGS

In a viable orbifold Higgs theory, we envision a cut-
off scale Λ ∼ 10 TeV above which the parent symmetry
is manifest, and below which the parent theory is re-
duced to the daughter theory. If the orbifold is realized
geometrically, this scale corresponds roughly to the in-
verse compactification scale of extra dimensions. As with
any global symmetry protection for the Higgs, a mech-
anism such as supersymmetry, compositeness, or large
extra dimensions protects the low-energy degrees of free-
dom from sensitivity to scales above the cutoff. At the
level of the field theory orbifold, the parent theory con-
sists minimally of an appropriate parent symmetry and
corresponding parent fields H,Q,U – which will give rise
to Higgs and top multiplets in the daughter theory – and
is orbifolded by a discrete group G to obtain a daughter
theory that includes a copy of SU(3)× SU(2) as well as
other orbifold sectors. The daughter theory contains var-
ious other Higgs and top multiplets distributed among
the other orbifold sectors. The quadratic potential for
the Higgs multiplets in the daughter theory will respect a
continuous symmetry originating from the parent theory.
When the Higgs multiplets acquire vevs, this acciden-
tal continuous symmetry will be spontaneously broken
with a collective order parameter f ∼ TeV, leading to
a radial mode of the accidental symmetry breaking and
some number of uneaten pseudo-goldstones. With an ap-
propriate perturbation of the vacuum to ensure v � f ,
the pseudo-goldstone aligned with v may be identified
with the SM-like Higgs. The quartic coupling δ of the
SM-like Higgs is radiatively generated from SM gauge
and yukawa couplings. There may be additional pseudo-
goldstones aligned with other orbifold sectors that are

SM-like Higgs

Extra pseudo-
goldstones

Radial mode

UV states

√λf ~ 1-2 TeV

√δf ~ 0.2-0.5 TeV

√δv ~ 125 GeV

Orbifold sector 
top quarks & 
weak gauge 

bosons

gf, yf~ 0.4-1 TeV

Λ ~ 5-10 TeV

FIG. 1: Schematic scales in an orbifold Higgs model.

parametrically heavier, with masses of order ∼
√
δf . The

role of the top partner is played by an admixture of top
quarks in the other orbifold sectors with masses of or-
der ytf , with couplings dictated by integrating out the
radial mode. Similarly, the roles of weak gauge partners
are played by an admixture of gauge bosons in the other
orbifold sectors with masses of order gf . The relevant
scales and states are sketched in Fig. 1.

For the sake of concreteness, consider the simplest ex-
ample of an orbifold Higgs where G = Z2 is embedded
into the gauge symmetries through the regular represen-
tation. For the time being, we will focus on the degrees of
freedom most relevant for naturalness of the weak scale,
namely the Higgs, third generation fermions, top yukawa,
QCD, and weak gauge interactions [23]. The parent sym-
metry consists of a gauge group SU(6) × SU(4). The
matter consists of a scalar H and two fermion multiplets
Q and U , transforming under the gauge group and an
SU(2) global symmetry as

SU(6) SU(4) SU(2)

H 1 � �
Q � � 1

U � 1 �

(2)

These symmetries allow a parent top yukawa, Higgs
mass, and Higgs quartic coupling of the form

Vp = yHQU −m2|H|2 + λ(|H|2)2 (3)

where we neglect a single-trace quartic operator with
some mischief aforethought. The daughter theory is ob-
tained by taking the orbifold [SU(6) × SU(4)]/Z2. The
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resulting gauge group is [SU(3) × SU(2)]A × [SU(3) ×
SU(2)]B × U(1)2. We will set aside the abelian fac-
tors for the time being (or lift them without consequence
via the Stueckelberg mechanism); on their own they are
unsuitable for identification with hypercharge, but may
be mixed with other U(1) generators to suit this pur-
pose. The matter consists of HA, QA, UA transform-
ing as a Higgs doublet, left-handed quark doublet, and
right-handed quark of SU(3)A × SU(2)A, and likewise
HB , QB , UB transforming analogously under SU(3)B ×
SU(2)B . There are no matter fields transforming under
both A and B groups. The relative dimensions of the
daughter groups are all identical, dα = 1, so that the
gauge, yukawa, mass, and quartic couplings inherited in
the daughter theory are the same as those of the parent.
In particular, the SU(3)A and SU(3)B gauge couplings
are identical, as are those of SU(2)A and SU(2)B , while
the interactions of the daughter theory take the form

Vd = yHAQAUA + yHBQBUB −m2(|HA|2 + |HB |2)

+ λ(|HA|2 + |HB |2)2 (4)

Note that these are precisely the interactions present
in the twin Higgs [7]. Whereas in the twin Higgs
model the fundamental symmetry is posited to be of
the form SMA× SMB ×Z2, here the daughter symmetry
SMA × SMB ×Z2 is merely a residual resulting from the
orbifold [SU(6)× SU(4)]/Z2. The orbifold also provides
an SU(4)-symmetric quartic in the daughter theory if the
parent theory quartic is dominated by double-trace terms
as in (3). This provides a guide for specific UV comple-
tions, as an approximately SU(4)-symmetric quartic is
required in the twin Higgs but cannot be explained by
the twin Z2 symmetry alone.

The power of the orbifold Higgs is manifest in the
structure of radiative corrections to the Higgs multiplets
in the daughter theory. As a proxy for the impact of ra-
diative corrections from mass thresholds at higher scales,
the quadratic part of the one loop effective potential with
uniform cutoff Λ takes the form [24]

V
(1)
d ⊃ Λ2

16π2

(
−6y2 +

9

4
g2 + 10λ

)(
|HA|2 + |HB |2

)
(5)

Note that these radiative corrections are proportional to
an SU(4) invariant |HA|2 + |HB |2, despite the fact that
the daughter theory does not possess a continuous SU(4)
symmetry; it is merely an accidental symmetry of the
quadratic action. This is the essential feature of the orb-
ifold Higgs: the heritage of a parent theory is an acci-
dental symmetry of the quadratic action in the daughter
theory. As such, when the Higgs multiplets of the daugh-
ter theory acquire vacuum expectation values, the phys-
ical SM-like Higgs h may be identified with an uneaten
pseudo-goldstone boson of the spontaneously broken ac-
cidental symmetry. This ensures that the potential for h

is independent of SU(4) invariants, and thus insensitive
to radiative corrections from higher scales.

At one loop there are also radiatively generated quar-
tics for each doublet that break the accidental SU(4)
symmetry, namely

V
(1)
d ⊃ 3

16π2
y4|HA|4 log

(
Λ2

y2|HA|2

)
+A→ B+ . . . (6)

where . . . includes numerically subleading corrections
proportional to g4 as well as SU(4)-preserving radia-
tive quartics proportional to λ. The vacuum structure
of the tree-level potential (4) perturbed by radiative cor-
rections (5) and (6) gives |〈HA〉|2 = |〈HB〉|2 = f2/2, so
that the goldstone mode of spontaneous SU(4) breaking
is equally aligned with the two sectors. In order to iden-
tify the goldstone mode with an SM-like Higgs, the vev
must be rendered asymmetric by either a soft (mass) or
hard (quartic) breaking of the residual Z2 symmetry in
the daughter theory. These terms explicitly violate the
parent symmetry, but may be induced in a geometric UV
completion. Either perturbation can result in a vacuum
with 〈HA〉 � 〈HB〉, such that the uneaten goldstone
of spontaneous SU(4) breaking is primarily aligned with
the physical fluctuation around 〈HA〉 ≡ v – i.e., can be
identified with the SM-like Higgs – and the radial mode
is primarily aligned with the physical fluctuation around
〈HB〉 ∼ f . The role of the top partner can be understood
by integrating out the radial mode, in which case the SM-
like Higgs inherits precisely the couplings to the B-sector
top quarks required of fermionic top partners, yet these
top partners are entirely neutral under the SM gauge
group. In this manner, the Higgs is a pseudo-goldstone
boson of an orbifolded SU(4) gauge symmetry and the
degrees of freedom guaranteeing radiative stability of the
weak scale are neutral under the SM.

The orbifold Higgs procedure enables the generaliza-
tion of the twin Higgs mechanism to arbitrary discrete
symmetries G, illuminating an extensive class of theories
where the naturalness of the weak scale is preserved by
degrees of freedom neutral under the Standard Model.
Perhaps the simplest generalization is G = ZΓ. Here the
parent gauge group is SU(3Γ)×SU(2Γ), and the orbifold
daughter symmetry is [SU(3) × SU(2)]Γ × U(1)Γ−1. As
in the case of Γ = 2, the Standard Model may be identi-
fied with one SU(3)× SU(2) factor, with the remaining
Γ − 1 factors comprising a set of identical orbifold sec-
tors. The theory possesses an accidental SU(2Γ) symme-
try spontaneously broken by the vevs of the Higgs multi-
plets charged under the Γ SU(2) factors in the daughter
theory. In this case there are Γ − 1 uneaten goldstones,
of which one may be identified with the SM-like Higgs
and the others are primarily aligned with other sectors.
The Higgs is a pseudo-goldstone of an accidental SU(2Γ)
symmetry at the quadratic level of the daughter action.
The protection by the top partners is now provided by a
linear combination of operators involving top quarks in
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the Γ− 1 orbifold sectors, with couplings again dictated
by integrating out the radial mode.

More interesting examples arise when G is nonabelian.
Consider, for example, G = S3. In this case the parent
gauge group is SU(18)×SU(12), and the orbifold daugh-
ter is [SU(3)× SU(2)]A × [SU(3)× SU(2)]B × [SU(6)×
SU(4)] × U(1)4. The two SU(3) × SU(2) sectors each
inherit a Higgs doublet HA,B , left-handed quark dou-
blet QA,B , and right-handed quark UA,B as before, while
the SU(6) × SU(4) sector inherits a pair of Higgs four-
plets HC,C′ , a single left-handed quark fourplet QC , and
two right-handed quarks UC,C′ . Now the SM gauge sec-
tor may be identified with one of the SU(3) × SU(2)
copies and the SM-like Higgs with a pseudo-goldstone
of the spontaneously broken accidental SU(12) symme-
try. The two SU(3)×SU(2) sectors have relative dimen-
sion dα = 1, and so inherit couplings directly from the
parent theory, while the SU(6)× SU(4) sector has rela-
tive dimension dα = 2 and inherits appropriately rescaled
yukawa and gauge couplings. The rescaling of couplings
guarantees that the one-loop radiative corrections to the
Higgs multiplets retain the SU(12) form up to 1/N cor-
rections,

V
(1)
d ⊃ Λ2

16π2

(
−6y2 +

9

4
g2 + 26λ

) ∑
I=A,B,C,C′

|HI |2
(7)

+
Λ2

16π2

(
9

16
g2

)(
|HC |2 + |HC′ |2

)
precisely as required by the orbifold correspondence. The
residual cutoff sensitivity of the Higgs multiplets charged
under the SU(4) sector is modest for a cutoff in the tens
of TeV. The protection from the top partners in this the-
ory originates from a linear combination of operators in-
volving top quarks in the other SU(3)×SU(2) sector and
the SU(6)× SU(4) sector.

DISCUSSION & CONCLUSIONS

Thus far we have focused on toy models with a field
theoretic orbifold, which identifies the relevant degrees
of freedom at low energies. Such orbifolds are typi-
cally realized geometrically by the reduction of higher-
dimensional theories subject to non-trivial boundary con-
ditions, which guarantees the form of the field theory
orbifold and provides a natural mechanism for includ-
ing couplings and states that violate the parent sym-
metry by localization at lower-dimensional defects. The
G = Z2 orbifold can be naturally realized in five dimen-
sions, whereas more complicated orbifolds such as ZΓ or
S3 require additional extra dimensions. Alternately, the
same physics may be reproduced entirely in four dimen-
sions using dimensional deconstruction [14].

Schematically, the parent symmetry is a gauge sym-
metry of the higher-dimensional bulk, with boundaries

respecting the gauge groups of the daughter symmetry
(but not necessarily the residual discrete symmetries).
The Higgs and third-generation top multiplets should
be identified with bulk states, while degrees of freedom
that are irrelevant for naturalness (such as first- and
second-generation Standard Model fermions) or do not fit
into the parent symmetry can be localized on the lower-
symmetry boundaries. Down-type quarks and leptons of
the third generation could be either bulk- or boundary-
localized; the former requires two Higgs doublets in the
bulk to allow Yukawa couplings, while the latter is com-
patible with a single bulk Higgs multiplet. Localizing
states on defects in geometric orbifolds liberates the orb-
ifold Higgs from a major drawback of the twin Higgs
scenario, namely the presence of light generations in the
twin sector. These are irrelevant for naturalness but lead
to potentially prohibitive contributions to Neff . They are
present in twin Higgs models with an exact Z2 symmetry
but can be eliminated entirely in geometric orbifolds by
localizing light generations on the boundaries.

We have also set aside discussion of hypercharge em-
beddings, for which there are many possible options.
Perhaps the simplest is to begin with a universal U(1)
in the parent theory such that all daughter sectors are
charged under the same U(1). This implies that all hid-
den sector fields will have hypercharge assignments iden-
tical to those of their Standard Model partners, giving
constraints from null searches for Z ′ gauge bosons, heavy
stable charged particles, and exotic particles coupling to
the Z boson. A more straightforward option is to ob-
tain independent hypercharge factors for each daughter
sector by extending the parent groups from SU(N) to
U(N). For example, the orbifold U(6) × U(4)/Z2 gives
an [SU(3) × SU(2)]2 × U(1)4 daughter theory, in which
two linear combinations of U(1) factors can be identi-
fied with hypercharge factors U(1)A,B , and the remain-
ing two linear combinations lifted by the Stueckelberg
mechanism. Or, as is often the case in string theory real-
izations of the Standard Model gauge group, hypercharge
may be obtained from embedding in a low-scale “unified”
group such as Pati-Salam SU(4)×SU(2)×SU(2) [15] or
SU(3) × SU(3) × SU(3) trinification [16]. In each case
the parent symmetries can be extended appropriately to
give rise to the unified group in the daughter theory, and
these unified groups may be broken by orbifolding with-
out giving rise to dimension-6 proton decay.

As with any global symmetry solution to the hierar-
chy problem, naturalness favors f . TeV (as heavier
scales would give large radiative corrections to the Higgs
mass), so that states in the additional orbifold sectors
lie near the weak scale. Although the partner states
are challenging to probe directly at colliders, there are a
number of possible experimental signatures. The radial
mode of accidental symmetry breaking may be probed in
searches for heavy Higgs states at the LHC. The SM-like
pseudo-goldstone Higgs always exhibits O(v/f) coupling
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deviations from Standard Model predictions and modest
O(v/f) invisible decays into other orbifold sectors, both
of which are consistent with current LHC bounds but
may be probed at future e+e− colliders. If there are no
light fermions in other orbifold sectors, confinement of
hidden sector gauge groups can give rise to hidden valley
signatures [17] in rare decays of the SM-like Higgs. These
signatures of naturalness differ radically from solutions to
the hierarchy problem based on continuous symmetries.

There are numerous future directions. Here we have
sketched the essential structure of orbifold Higgs mod-
els and illustrated features of UV complete models, but
it would be worthwhile to construct explicit UV com-
pletions and explore their phenomenology. We have also
restricted our attention here to orbifolds of gauge symme-
tries in the parent theory; it would be extremely inter-
esting to extend our analysis to simultaneous orbifolds
of gauge and R-symmetries in supersymmetric models,
leading to the generalization of models such as folded
supersymmetry [18]. More generally, the orbifold Higgs
demonstrates that entirely novel theories for the weak
scale may be generated by the appropriate reduction of
more familiar continuous symmetries. We have focused
on orbifolding by the regular embedding of a discrete
symmetry, but in principle there are many other possi-
bilities, including orbifolds using alternate embeddings
of the discrete symmetry; orientifolds; or more exotic de-
fects arising in the context of string theory.
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