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Using Venn diagrams, we classify the different types of two-mode Gaussian continuous variable
quantum correlation including directional entanglement and Einstein-Podolsky-Rosen (EPR) steer-
ing. We establish unified signatures for one- and two-way quantum steering, entanglement, and
discord beyond entanglement in terms of an EPR-type variance. By focusing on Gaussian states,
we link an optimised condition for entanglement based on an EPR variance to the Simon-Peres con-
dition. This allows us to quantify the asymmetry of the Gaussian entanglement, and to relate the
asymmetry to a directional quantum teleportation protocol where Alice and Bob possess asymmet-
rically noisy channels. Our analysis enables a determination of the type and direction of quantum
correlation in a way that is easily measured in experiment. We also find that for symmetric states,
when discord exceeds a certain threshold, the states are necessarily steerable.

The topic of quantum correlations has received much
attention in modern physics [1, 2]. Entanglement is a dis-
tinctive feature of quantum correlations [3] and it is con-
sidered that all entangled states are useful for quantum
information processing (QIP) [4]. Einstein-Podolsky-
Rosen (EPR) correlations enable error-free predictions
for the position − and the momentum − of one particle
given some type of measurement on another. EPR cor-
relations are especially useful [5]. As one example, the
fidelity of the quantum teleportation (QT) of a coherent
state is directly related to the strength of EPR correla-
tion available in the quantum resource [6].

Very recently, there has been an appreciation of the
importance of asymmetry and direction in quantum cor-
relations [7–11]. Entanglement is a property shared be-
tween two parties, and measures of it have not been
sensitive to differences between the quantum parties in-
volved [12]. Yet, the original EPR argument was ex-
pressed asymmetrically between the two systems. The
analysis by Schrodinger introduced the asymmetric term
“steering” to describe the EPR idea of one party ap-
parently adjusting the state of another by way of lo-
cal measurements [13]. This aspect has been beauti-
fully captured in two recent alternative definitions for
quantum correlations: quantum discord [7, 8] and EPR-
steering [9, 10]. Besides being of intrinsic fundamental
interest, these asymmetrical nonlocalities are attracting a
great deal of attention [14–17] for special tasks in quan-
tum information processing (QIP) e.g. cloning of cor-
relations [18], quantum metrology [19], quantum state
merging [20], remote state preparation [21], one-sided
device-independent quantum key distribution [22] and
entanglement verification [23]. Surprisingly, for mixed
states, quantum discord can emerge without entangle-
ment and recent experiments [24, 25] have used discord to
distribute entanglement using separable states only [26].
Despite the potential value of directional quantum cor-
relation, relatively little is known about the quantitative

link between discord and steering, and methodologies to
simply characterize quantum states for their asymmetri-
cal correlation [27].

Our aim in this Letter is to provide a method to dis-
tinguish the type and direction of correlation of a given
state, with the aid of a parameter involving an EPR-type
variance. By focusing on the subclass of bipartite quan-
tum systems called Gaussian states [28] which have en-
abled experimental milestones such as deterministic QT
[29], we find a condition for entanglement based on an
EPR-type variance that is equivalent to the Simon’s pos-
itive partial transpose (PPT) condition [30]. This allows
us to quantify the asymmetry of the Gaussian entangle-
ment, and to show this is directly related to the amplifica-
tion of an optimal teleportation protocol. Asymmetrical
Gaussian entanglement is not fully understood, yet the
feasibility of using discord for quantum tasks involving
asymmetrically noisy channels is already of experimental
interest [17, 25, 31–33].

Here, we address this gap in knowledge by introducing
a means to quantify and characterize directional entan-
glement, via a symmetry parameter gA|Bsym, even where
there is no EPR-steering. By further introducing an
EPR-steering parameter, we provide a simple experimen-
tal signature to distinguish the states of different classes,
whether EPR-steering, entanglement, or discord beyond
entanglement. Moreover, we arrive at conditions to iden-
tify symmetric correlation, where the roles of Alice and
Bob are interchangeable, and in this way arrive at an in-
equality sufficient to identify two-way EPR-steering. We
show how one can produce a desired two-mode squeezed
EPR state to fulfill a given directional quantum task,
by adding asymmetric amounts of thermal noise to each
sub-system. Finally, we find that in the parameter re-
gion where the states are highly discordant, they are also
highly steerable.

We begin by considering two-party Gaussian systems
where Alice and Bob make position/ momentum (or
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Figure 1. (Color online) The Venn diagram relations classify-
ing the different types of quantum correlation for two-mode,
two-party Gaussian states. The larger blue circle II con-
tains states satisfying the Tan-Duan criterion for entangle-
ment ∆ent < 1. The inner blue circle I contains states with
the symmetric two-way EPR steering correlation given by
∆ent < 0.5. The set of all entangled states quantified by the
Simon-PPT criterion EntPPT < 0 (equivalent to Ent < 1)
are contained in the larger green ellipse V I. The smaller or-
ange IV and yellow V ellipses enclose states that display the
directional steering, given by the Reid-EPR paradox condi-
tion EA|B < 1 and EB|A < 1, respectively. Their intersection
(colored yellow) is the set of two-way steerable states, which
is a strict superset of the states in I. All two-way steerable
states are a subset of the entangled states quantified by the
Tan-Duan condition ∆ent < 1. One-way steering states are a
strict subset of the PPT entangled states, and are strictly not
contained in the Tan-Duan circle ∆ent < 1. The symmetric
states with g

A|B
sym = 1 (n = m) are depicted at the very centre

of the diagram (dashed line). Those with g
A|B
sym > 1 (n > m)

are to the right of the centre line; those with g
A|B
sym < 1 (n < m)

to the left. The outer ellipse III contains the set of Gaussian
states with non-zero quantum A and B discord.

field quadrature) measurements XA, PA and XB , PB re-
spectively, on two well-separated modes denoted A and
B. All Gaussian properties can be determined from
the symplectic form of the covariance matrix (CM) de-
fined as Cij = 〈(XiXj + XjXi)〉/2 − 〈Xi〉〈Xj〉 where
X ≡ (XA, PA, XB , PB) is the vector of the field quadra-
tures [30, 34–36]:

C =


n 0 c1 0
0 n 0 c2
c1 0 m 0
0 c2 0 m

 . (1)

The symplectic invariants are defined by I1 = n2,
I2 = m2, I3 = c1c2, I4 ≡ det(C) = (nm − c21)(nm −
c22), and the symplectic eigenvalues of the CM of a
generic two-party Gaussian state are given as d± =√(

∆±
√

∆2 − 4det(C)
)
/2 with ∆ = I1 + I2 + 2I3

[31, 35, 36]. Our particular interest will be the subclass
c1 = −c2 = c, which includes the major experimen-
tally realized CV EPR resources [29] such as the two-
mode squeezed thermal state (STS) and the two-mode
EPR state with phase-insensitive losses. The covariance

matrix elements in the STS case are n = (nA + nB +
1)cosh(2r) + (nA − nB), m = (nA + nB + 1)cosh(2r) −
(nA − nB), c = (nA + nB + 1)sinh(2r), where nA, nB
are the average number of thermal photons for each sys-
tem and r denotes the squeezing parameter. We stress
however our classification is for all two-mode Gaussian
systems, and does not restrict to this case.
Entanglement: In this paper, we normalize the vac-

uum fluctuations so that ∆X∆P ≥ 1. Simon’s PPT
criterion for entanglement is [30]

EntPPT = (nm− c21)(nm− c22) + 1

−
(
n2 +m2 + 2|c1c2|

)
< 0. (2)

This is a necessary and sufficient condition for the en-
tanglement of two-mode, two-party Gaussian systems.
Using the PPT criterion (2), we see that a two-mode
STS is entangled iff r exceeds the threshold value rent:
cosh2(rent) = (nA + 1)(nB + 1)/(nA + nB + 1) [15]. The
complete set of PPT entangled states is depicted as con-
tained within the green ellipse of Fig. 1. This set is not
exhaustive for Gaussian states as seen by the values for
EntPPT versus the thermal noises nA and nB shown in
Fig. 2a [31, 32].

Entanglement can also be determined using an EPR-
type variance [34, 37–40]. On considering the weighted
difference variances [∆(XA−gxXB)]2 = n−2gxc1+g2xm,
[∆(PA +gpPB)]2 = n+2gpc2 +g2pm, it is straightforward
to prove that entanglement between modes A and B is
confirmed if [40]

EntA|Bg =∆(XA − gxXB)∆(PA + gpPB)/(1 + gxgp)

< 1. (3)

We use the notation (∆x)2 ≡ 〈x2〉 − 〈x〉2. This condi-
tion does not assume Gaussian states, and is sufficient
to confirm entanglement for all states. Here gx, gp are
arbitrary real constants that can be optimally chosen to
minimize the value of EntA|Bg . For the restricted subclass
of Gaussian EPR resources where c1 = −c2 = c, there is
symmetry between the X and P moments and a single
g = gx = gp is optimal. This choice of g that minimises
Ent

A|B
g is readily found to be g = g

A|B
sym where

gA|Bsym ≡
(
n−m+

√
(n−m)2 + 4c2

)
/2c. (4)

Manipulation shows that the EPR-type variance bound
Ent

A|B
g < 1 and the Simon-Peres PPT bound EntPPT <

0 are equivalent, as shown in Fig. 2a. The optimal gains
for c1 6= c2 are given in the supplemental materials [41].
The minimum EPR variance is defined Ent = Ent

A|B
g

where g = g
A|B
sym, and its smallness gives a quantifica-

tion of the Gaussian entanglement. Note that the en-
tanglement between modes A and B can be also con-
firmed by EntB|Ag′ < 1. The quantification of entangle-
ment is symmetric with respect to A and B: That is,
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Ent
B|A
g′ = Ent

A|B
g where g′ = g

B|A
sym = 1/g

B|A
sym. This is

to be expected: Entanglement is by definition a quantity
shared between two systems, and its PPT threshold does
not account for the directional properties associated with
quantum correlation (see Fig. 2a).
Symmetric “Tan-Duan” entanglement: Where

one has either pure states or else complete symmetry be-
tween the systems so that c1 = −c2 = c and n = m,
we find that the symmetry parameter is g

A|B
sym = 1.

The PPT criterion (3) for entanglement then reduces to
Ent

A|B
g=1 < 1, which (for c1 = −c2) is equivalent to the

Tan-Duan entanglement condition [34, 37]

∆ent =
[
[∆(XA −XB)]2 + [∆(PA + PB)]2

]
/4 < 1. (5)

Resources with the property (5) are required for the CV
quantum teleportation (QT) of a coherent state via the
protocol of Braunstein and Kimble [6, 35]. These states
are depicted as enclosed within the dark blue circle II
of Fig. 1. This type of entanglement can also be cre-
ated from asymmetric mixed states in special cases: For
example, the STS squeezing threshold for Tan-Duan en-
tanglement is r > rQT = ln

√
nA + nB + 1.

Asymmetric entanglement: The directional corre-
lation happens for asymmetric mixed states, which create
the ellipses of Fig. 1 outside the blue circle II (symmetry
parameter gsym 6= 1). Sufficiently asymmetric systems
(where n� m) arise for example when coupling massive
objects to laser pulses, and require the full PPT entan-
glement test (outside the blue circle II, but within the
green ellipse) as illustrated in Fig. 1 [49].
Discord: Quantum discord is by definition a mea-

sure of asymmetric quantum correlation between the two
subsystems [7]. The “quantum A discord” that considers
the conditional information for Alice’s system A based
on measurements on system B by Bob, has been derived
for a Gaussian state by Giorda and Paris [31] and Adesso
and Datta [32] as

DA|B = f(m)− f(d+)− f(d−) + f (z) , (6)

where z = (n + mn + c1c2)/(m + 1) and f(x) = [(x +
1)/2]ln[(x + 1)/2] − [(x − 1)/2]ln[(x − 1)/2]. With the
exchanging m ↔ n and hence I1 ↔ I2, we obtain the
result for the B discord DB|A. Quantum A discord is
obtained for all bipartite Gaussian states that are not
product states, although there are non-entangled states
that have nonzero discord [31]. The quantum discord is
the difference between two classically-equivalent defini-
tions of conditional entropy [7, 8, 31]. Denoting the von
Neumann entropy of the quantum state ρ by S(ρ), the
first S(ρA|B) ∼ f(d+) + f(d−) − f(m) arises from us-
ing the definition of mutual information based on the
bipartite state ρAB . The second arises from quanti-
zation of the expressions for the conditional entropy:
H(ρA|B) =

∑
k pB(k)S(ρA|k) ∼ f(

√
z) where pB(k) is

the probability of result k for a measurement at B, and
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Figure 2. (Color online) Contour plots show the effect of
asymmetric noises nA and nB on quantum correlation, for
the two-mode STS with r = 0.6: (a) entanglement measured
by Ent, (b) discord measured by DA|B , and (c) the steering
parameter EA|B . In (c), the states can be used as quantum
resources with EPR steering (below red curve), entanglement
(below green curve), or discord beyond entanglement (above
green curve) as explained in text. (d) shows the different re-
gions defined in Fig. 1 certified by criteria of steering, entan-
glement, discord, and unphysical CMs (light gray area UP )
versus n and m.

S(ρA|k) =
∑

i p(i|k)S(ρi|k) where p(i|k) is the condi-
tional probability of outcome i at A given the result k
at B. The discord (6) is obtained by minimizing the mis-
match over all Gaussian measurements. The terms in
the quantum A discord H quantify the available infor-
mation for the conditional state of A after measurement
on B, and also reflect uncertainty in measurements of
Alice when Bob’s outcome k is known.
EPR Steering: Interestingly, this reminds us of the

other asymmetric nonlocality, EPR steering from B to
A (B → A) [1, 9, 10], which is realized if the Reid-EPR
paradox condition [38]

EA|B ≡ ∆infXA|B∆infPA|B < 1 (7)

is satisfied [10]. The condition becomes necessary and
sufficient for steering B → A for two-mode Gaussian
systems [9]. Here [∆infXA|B ]2 =

∑
k pB(k)[∆(XA|k)]2

where [∆(XA|k)]2 is the variance of the conditional dis-
tribution for Alice’s XA conditional on the result k. The
measurement at B is selected to minimize the quantity
[∆infXA|B ]2. The [∆infPA|B ]2 =

∑
k′ pB(k′)[∆(PA|k′)]2

is defined similarly, for the momentum PA. The states
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with the steering property (7) (B → A) are depicted
by the small orange-pink ellipse of Fig. 1. The
EPR steering condition (7) also holds if we define
[∆infXA|B ]2 = [∆(XA − g′xXB)]2 and [∆infPA|B ]2 =
[∆(PA + g′pPB)]2 where g′x,p are real constants, adjusted
to minimize the variances [39]. For Gaussian states the
optimization ensures the equivalence of the two defini-
tions [39]. The quantity EA|B is minimized to EA|B =√

(n− c21/m) (n− c22/m) by the optimal factors g′x =
c1/m, g′p = −c2/m [35, 38], and its smallness gives a mea-
sure of the degree of the steering nonlocal correlations.
Ideally, EA|B becomes zero in the limit of large r. As with
discord, we obtain the result for the steering from A to
B (A → B) by interchanging parameters: EB|A is min-
imised to EB|A =

√
(m− c21/n) (m− c22/n) where g′x =

c1/n, g′p = −c2/n (small yellow ellipse of Fig. 1). Re-
turning to the two-mode STS example, to satisfy steering
EA|B < 1 or EB|A < 1 requires the squeezing r to exceed
the threshold value given by rA|B and rB|A respectively,
where cosh2

(
rA|B

)
= (2nA + 1)(nB + 1)/(1 + nB + nA)

or cosh2
(
rB|A

)
= (nA + 1)(2nB + 1)/(1 + nB + nA).

Two-way EPR steering : Two-way steering is con-
firmed when both EA|B < 1 and EB|A < 1, as given by
the yellow intersection of the two smaller ellipses of Fig.
1. The STS state with r > {rA|B , rB|A}max can be used
to produce two-way steering, which is only possible when
|nA − nB | < 1/2. A single criterion sufficient to certify
two-way steering (without the assumption of Gaussian
states) is EntA|Bg < 0.5 where g = gx = gp = 1, or
∆ent < 0.5. This is seen on noting that EntA|Bg=1 < 0.5 be-
comes EA|B < 1 and EB|A < 1 when we take g′x = g′p = 1,
and that algebraically ∆ent ≥ Ent

A|B
g=1 . The condition

∆ent < 0.5 is also the Grosshans and Grangier con-
dition required of an EPR resource for the secure no-
cloning teleportation (ST) of a coherent state [47]. For
symmetric states, gsym = 1, the condition reduces to
Ent < 0.5. The states with this strongly symmetric
two-way EPR steering correlation are depicted by the
inner light blue circle I of Fig. 1. For STS states, this
requires the squeezing r to exceed the threshold value
r > rST = ln

√
2(nA + nB + 1). We see that ∆ent < 0.5

is not a necessary condition for two-way steering (nor
Ent < 0.5 in the symmetric case): Two-way steering is
possible when {rA|B , rB|A}max < r < rST , as shown by
the yellow region not contained in I (Fig. 1), and for the
symmetric pure two-mode squeezed state (nA = nB = 0)
for all r 6= 0 (corresponding to all values of entanglement,
including Ent→ 1).

Unified signature and application of asymmet-
ric correlation: We note that the inequality (3) with
g = g

A|B
sym will determine the Gaussian entanglement for

the subset of states where c1 = −c2 = c. The inequality
(3) and (2) both then require nm− c2 + 1− n−m < 0.
This can be written as a bound on the steering parame-
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Figure 3. (Color online) The allowed Gaussian steerability
(shaded region) versus discord for the symmetric Gaussian
case restricting to c1 = −c2 = c and n = m.

ter:

EA|B ≡ EA|B(g) <
m+ n− 1

m
, (8)

with factor g = c/m. This can be also written as
EB|A ≡ EB|A(g′) < (m+ n− 1) /n with the optimal
gain factor g′ = c/n. Hence, we establish a unified exper-
imental measure of quantum correlation for this subset:
EPR steering if EA|B < 1 is satisfied (below the red curve
in Fig. 2c); entanglement if EA|B < (m+ n− 1) /m (be-
low the green curve in Fig. 2c) and discord beyond en-
tanglement if EA|B > (m+ n− 1) /m (above the green
curve in Fig. 2c). By a single steering measure EA|B ,
one can quantify quantum correlation of a given Gaussian
state. Note however that our classification uses criteria
that are sufficient (but not necessary) to confirm entan-
glement and steering for an arbitrary quantum state.

Generally, the presence of asymmetric noises creates
the possibility of asymmetric steering/ discord, making
steering/ disturbance from A to B more difficult than
that from B to A, as illustrated in Fig. 2 for the STS
with r = 0.6. Entanglement is absent for EntPPT ≥ 0,
as shown in Fig. 2a. All regions show “quantum A dis-
cord”, given by DA|B > 0 (Fig. 2b) [31]. Thermal noises
tend to suppress entanglement, for which the dependence
on nA and nB is symmetric. However, the effect on the
discord is more complex and asymmetrical. We can see
that DA|B is maximized when most of thermal noise is
placed on the unmeasured system A. The sensitivity of
the steering parameter EA|B to the noises is asymmet-
rical and “one-way steering” (the states contained in the
smallest left ellipse of Fig. 1 but exclusive of the right
one) is evident. The value of EA|B is minimized (and
steering increased) when most of thermal noise is placed
on the system B, since EA|B < (m+n− 1)/m ∼ 1 when
m � n. With the knowledge of these different sensi-
tivities, one can prepare states with the desired type of
correlation.

The behavior of discord is strongly related to steering.
We note from Fig. 3, which is general for the subset of
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symmetric states, that in the parameter region where the
states are highly discordant, they are also highly steer-
able. We also notice that a state is always steerable pro-
vided that the discord exceeds a certain threshold. This
is consistent with the picture of EPR-type disturbances
to Alice’s system because of Bob’s measurements [41].

Finally, we emphasize potential applications of asym-
metric quantum correlation. We show in the Supplemen-
tary Materials [41] that the directional entangled states
are useful as a resource for the quantum amplified tele-
portation of a coherent state |α〉 → |gB|Asymα〉 from Alice
to Bob (if gB|Asym≥ 1), or from Bob to Alice (if gB|Asym ≤ 1).
In conclusion, our results offer a unified signature to ex-
amine the type and direction of correlation for a given
quantum state, and suggest asymmetric correlations to
be promising candidates for quantum tasks requiring a
directional operation.
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