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Geometry of quantum observables and thermodynamics of small systems

Maxim Olshanii1, ∗

1Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA

We show that for classical and quantum observables, the integrability-to-ergodicity transition leaves con-

stant the sum of (a) the ensemble variance of the temporal average and (b) the ensemble average of temporal

variance. The induced Frobenius (Hilbert-Schmidt) geometry of quantum observables encodes how eigenstate

thermalization appears, the inverse participation ratio decreases, and the integrals of motion disappear during

the transition. We use it to optimize the set of conserved quantities entering the Generalized Gibbs Ensemble

for integrable, near-integrable, or mesoscopic systems.

PACS numbers: 42.50.Lc,05.30.Ch,02.30.Ik,03.75.Kk

Nonequilibrium dynamics of isolated quantum systems has

received much attention [1–5] following the landmark experi-

ment [6]. Much studied is the integrability-to-chaos transition

(ICT) [2, 7, 8], linked to the Fock-space diffusion and local-

izaton in disordered interacting systems [2, 7, 8] and, in quan-

tum field theory, to the confinement of topological excitations

[7, 9] and the decay of higher-mass excitations [7, 10]. On the

classical side, all began with the Fermi-Pasta-Ulam problem

[11, 12], its legacy including solitons, dynamical chaos, and

the Kolmogorov-Arnold-Moser (KAM) theorem. For quan-

tum dynamics, we now know that chaos and thermalization

happen within individual eigenstates (the eigenstate thermal-

ization hypothesis (ETH) [2, 5, 13–15]). Much impetus came

[15] from studying relaxation in integrable systems [2, 5, 16].

We will study the ICT in the following setting: let Ĥ0 be

an integrable Hamiltonian, and V̂ a perturbation such that the

full Hamiltonian Ĥ = Ĥ0 + gV̂ (g > 0) is non-integrable if

g > 0. g varies from zero to large enough to just begin to fully

ergodize the system, without changing the energetics. (Ergod-

icity normally emerges for interaction strengths still too weak

to alter the thermal expectations of observables: e.g., the van

der Waals interactions between the air molecules cause ther-

malization but do not modify the Maxwell distribution.) Let

A be an observable, and Â the corresponding operator.

Below, we will: 1. show that the ICT obeys a “circle law”:

the sum of certain two types of fluctuations is independent of

g; 2. motivated by this, introduce a geometry in the space of

observables, based on the Hilbert-Schmidt inner product; 3. as

an application of this new formalism for describing the ICT,

show how to optimally choose the operators to be included

into the the Generalized Gibbs Ensemble (GGE) [16].

The “circle law” relates two fluctuation measures of A:

VarMC[Et[A]]
∣

∣

∣

QM
+ EMC[Vart[A]]

∣

∣

∣

QM
= const. inde-

pendent of g.
(1)

The text from here to the paragraph containing Eq. (2) is ded-

icated to explaining this statement.

Start classically: imagine a ball in a rectangular billiards

with periodic boundary conditions and either with or without a

localized obstacle. With no obstacle, the system is integrable;

with the obstacle present, let the system be ergodized but with

unchanged energetics (see above). Consider A = vx of the

ball. Given an initial velocity ~v0, compute the infinite-time

mean of A over a trajectory, Et[A], and the infinite-time av-

erage of the temporal fluctuations around this mean, Vart[A].
Do this for all ~v0’s from a microcanonical (MC) hypersurface

of a certain energy; compute the MC variance of Et[A] and

the MC mean of Vart[A]. Now: if the obstacle is absent, then

vx = vx,0 for all t; thus Et[A] = vx,0, while Vart[A] = 0.

So VarMC[Et[A]] = the variance of A in the MC distribution,

while EMC[Vart[A]] = 0. The obstacle reverses this [17]: no

matter what ~v0 is, the infinite time average of vx is zero, so

VarMC[Et[A] = 0; meanwhile, the temporal fluctuations in

vx are finite, so EMC[Vart[A]] is finite, and in fact it also turns

out to be equal to the variance of A in the MC distribution,

consistent with Eq. (1). Figure 1a shows on an example that

this law also holds for intermediate strengths of the obstacle.

Next we translate the classical quantities to quantum ones.

Let Ĥ|αg〉 = Eg
α|αg〉. The MC window [MC], which will be

short for ‘maximal allowed MC window,’ is a certain heuristi-

cally determined energy interval centered on the mean energy

of the system: plot 〈αg|Â|αg〉 versus Eg
α. Start zooming in to

the part of the plot at the mean energy; once the plot starts to

have no structure across the MC window (it should ‘look the

same’ if it is flipped left-to-right), further decreases in win-

dow size would not decrease the MC variance. We make sure

this window size works for both g = 0 and the maximal g of

interest; the horizontal extent [Emin, Emax] is then our [MC].
In our numerics below, the MC window is a fraction of the full

width of the energy spectrum. ‘|αg〉, αg ∈ [MC]’ mean that

Eg
α ∈ [MC]. The MC means and variances are the usual ones,

over all |αg〉 ∈ [MC].
For us, the quantum analog of an ensemble of classical ini-

tial conditions is the ensemble of randomly chosen energy

eigenstates [18]. So VarMC[Et[A]]
∣

∣

∣

QM
= VarMC[〈α|Â|α〉]:

VarMC[Et[A]]
∣

∣

∣

QM
≡

1

NMC

∑

α∈[MC]

(〈α|Â|α〉 − 〈A〉)2 ,

where 〈A〉 = EMC[A] ≡ (NMC)
−1

∑

α∈MC〈α|Â|α〉, and NMC

the number of eigenstates in [MC]. For brevity, |α〉 = |αg〉.
A sufficient condition for the for the emergence of ergodicity

[13–15] is that VarMC[〈α|Â|α〉] → 0 in the thermodynamic

limit: this is ETH [19]. Below, in Eq. (3), we give a scale for

this variance, determining to what extent A is thermalizable.
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FIG. 1. The ‘circle law.’ a, A classical rectangular billiards per-

turbed by a soft-core barrier, with periodic boundary conditions (see

Sec. SD6 of [22]). For all barrier heights . the kinetic energy,

Eq. (1) holds, where A = 1

2m
p2x −

1

2m
p2y. With no barrier, the

ensemble mean energy is E0 = 33.7. V is the barrier height and

E is the mean energy of the ensemble (including the barrier energy).

(V/E) point-to-(V/E) point, the phase-space volume of the MC en-

semble (W = 1184.3), and that of the phase-space points with en-

ergies below the MC window (Wb = 7895.7), do not change. Such

a set of ensembles is the closest classical analogue of a quantum set

using the same window of quantum state indices for all perturbation

strengths. b, A quantum example: three integrals of motion of a sys-

tem of hard-core bosons. The integrability is gradually broken by

a soft-core two-body repulsive potential, whose height is U at dis-

tances 6 four sites, and zero otherwise (see Sec. SD7 of [22]). There

are N = 4 particles and L = 16 lattice sites, and open bound-

ary conditions. The integrals of motion Î4 and Î6 are explained in

the text. The ‘artificial’ integral of motion Îrandom is, in the basis of

the unperturbed eigenstates, a diagonal matrix whose entries are ran-

domly and uniformly distributed between −1 and +1. For Îrandom, the

cosine-squared of the polar angle of a plotted point equals the inverse

participation ratio η (up to corrections of O(N−1

MC ); see Eq. (4)). Î4
and Î6 behave similarly.

To quantify EMC[Vart[A]]
∣

∣

∣

QM
: for every t of interest, we

repeatedly time-evolve the system from the same initial state

until performing the measurement at t; at the end we compute

the variance. Reference [20] argued that in the ergodic case,

these are in fact the thermal fluctuations [21]. Thus

EMC[Vart[A]]
∣

∣

∣

QM
≡

1

NMC

∑

α∈[MC]

(

〈α|Â2|α〉 − 〈α|Â|α〉2
)

.

In Fig. 1b we test Eq. (1) on the 1D gas of lattice hard-core

bosons perturbed by a two-body soft-core repulsive interac-

tion (see Sec. SD7 of [22]). In 1D, both continuous-space and

lattice hard-core bosons are integrable: Girardeau’s map [23]

and the Jordan-Wigner transformation, respectively, map the

system eigenstates to those of a free Fermi gas, so that occu-

pation numbers of the eigenstates of the one-body Hamilto-

nian for the underlying free fermions are integrals of motion.

The integrals of motion we consider are Î4 and Î6, which are

easiest to understand using the âjs and â†js of the underly-

ing lattice free fermions (see also Sec. SD8 of [22]): note

that the energy is the normalized sum over lattice sites j of

â†j âj+1 (plus h.c.); then Î2k is the normalized sum (modulo

h.c. and boundary terms to accommodate the open boundary

conditions) over j of â†j âj+k . Equivalently, up to boundary

terms, Î2k ∼ cos kp̂, where p̂ is the momentum of the under-

lying fermions. As we ramp up the perturbation, Î4 and Î6
are gradually destroyed: while the quantum (=thermal [20])

fluctuations increase, the deviations from ergodicity decrease.

However, the sum of the two variances remains constant. The

square of the radius of the circles corresponds to the ensemble

variance of the observable, over a series of single measure-

ments, on a randomly chosen eigenstate.

To finally prove (1), we rearrange the terms in the defini-

tions of VarMC[Et[A]]
∣

∣

∣

QM
and EMC[Vart[A]]

∣

∣

∣

QM
and write the

left-hand-side (LHS) of (1) as the ensemble variance of Â:

VarMC[Et[A]]
∣

∣

∣

QM
+ EMC[Vart[A]]

∣

∣

∣

QM
= VarMC[A] , (2)

where VarMC[A] = EMC[A
2]− EMC[A]

2, and so is a function

of two ensemble means. Let us prove that as g is increased

from zero up to a value where the system first becomes er-

godic, the ensemble means remain constant. The integrability-

breaking perturbation gV̂ will need to satisfy two conditions:

let δE0(g) be the typical shift in eigenenergies due to gV̂ ; and

let ∆E0
V̂

be the characteristic energy interval such that V̂ ap-

preciably couples only those eigenstates of Ĥ0 whose energy

difference is less than ∆E0
V̂

. We require that both δE0(g)

and ∆E0
V̂

be much smaller than the width of the MC window

used to define the ensemble means. Now consider the eigen-

states of the unperturbed system; the perturbation results in

their mutual coupling, and some shifting of the eigenenergies.

Because δE0(g) is small, as g is increased, almost all eigenen-

ergies remain in the original MC window; and because ∆E0
V̂

is small, we may neglect the coupling of states within the win-

dow to states outside the window. But then we may as well

truncate our Hilbert space to just the states inside the win-

dow (obtaining a ‘truncated Hamiltonian’). Let us first trun-

cate, and then turn on g. The eigenstates of the perturbed and

unperturbed truncated Hamiltonians, being bases of the trun-

cated space, are related by a unitary transformation. But the

two ensemble means are traces, and thus do not change under

unitary transformation of the basis; thus they do not depend

on g, proving Eq. (1).

The system in Fig. 1b does satisfy the two requrements.

We have [MC] = [−2, 2]; for the values of g used, when one

plots the eigenenergies with g = 0 and g 6= 0, the energy

shifts are not noticeable on the scale of this MC window. As
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FIG. 2. The Hilbert-Schmidt geometry and quantum integrability-

ergodicity transition. The N2-dimensional space of operators on an

N -dimensional space is divided onto the sum of three subspaces LU ,

Ltl, d-Ĥ , and Lo-d-Ĥ (see text). Varying the coupling constant g of the

Hamiltonian Ĥ = Ĥ0+gV̂ rotates the spaces Ltl, d-Ĥ and Lo-d-Ĥ but

not the identity axis (the projection to which is proportional to the

microcanonical (MC) average). An observable’s HS vector also re-

mains fixed (thus, so does the MC average). Observables with a large

projection onto Ltl, d-Ĥ are quasi-conserved (non-ergodic); those with

a large projection onto Lo-d-Ĥ are thermalizable (infinite time aver-

age equals the MC average). We have ergodicity when Lo-d-Ĥ aligns

with the traceless versions of all the observables of interest, e.g. with

all few-body observables in a many-body system.

for the second reqirement, let Ĥ0|α0〉 = E0
α0
|α0〉; the rms

energy distance between the |α0〉’s coupled by V̂ is (Vα0,α′

0
=

〈α0|V̂ |α′
0〉):

∆E0
V̂
≡

√

√

√

√

∑

α0∈[MC]

∑

α′

0

|Vα0,α′

0
|2(E0

α′

0

− E0
α0
)2

∑

α0∈[MC]

∑

α′

0

|Vα0,α′

0
|2

= 0.3 .

Equation (2) has a geometric interpretation: after we move

EMC[A]
2 to the LHS, the RHS becomes the norm-squared of

a vector, and the new LHS is its decomposition over certain

complementary subspaces that change with g. The relevant

inner product is the Frobenius, or Hilbert-Schmidt (HS), prod-

uct of matrices: (Â|B̂) ≡ Tr[Â†B̂]. Quantum observables

(Hermitian matrices) form a linear space over the reals; the

HS product is a real-valued inner product on this space. The

unitary transformations Â 7→ Û ÂÛ−1 are a subgroup of the

group of linear transformations preserving the product. Con-

sider the MC window of eigenstates (a space of size NMC),

and the N2
MC-dimensional space (over the reals) of all Her-

mitian operators acting within the window. The HS product

is an inner product on the latter space, which we decompose

into the direct sum of three pairwise orthogonal subspaces:

1. the 1D space LU spanned by the identity operator Îd; the

projection of Â onto this space is P̂LU
Â = (Tr Â/N2

MC) Îd;

2. the (NMC − 1)-dimensional space L
tl, d-Ĥ of all trace-

less integrals of motion, i.e. of traceless operators purely

diagonal in the basis of the eigenstates |αg〉: P̂L
tl, d-Ĥ

Â =
∑

αg
|αg〉〈αg|(Â − P̂LU

Â)|αg〉〈αg|; 3. the NMC(NMC − 1)-
dimensional space L

o-d-Ĥ of all purely off-diagonal operators

in the same basis: P̂L
o-d-Ĥ

= Îd − P̂LU
− P̂L

tl, d-Ĥ
(see Fig. 2).

The HS angle θL
tl, d-Ĥ

, Âtl
between the traceless version of

an observable ( Âtl ≡ Â − Tr[Â]/NMC) and the space L
tl, d-Ĥ

quantifies the extent to which A is thermalizable:

tan2[θL
tl, d-Ĥ

, Âtl
] = EMC[Vart[A]]

∣

∣

∣

QM
/VarMC[Et[A]]

∣

∣

∣

QM
(3)

(see Fig. 2). The HS angle between a vector B̂ and a hy-

perplane L is given through cos2(θB̂,L) =
∑

i cos
2(θB̂, êi

)

0 ≤ θB̂,L ≤ π/2, where {êi} is any orthonormalized basis

set in L; cos(θB̂, êi
) = (B̂|êi)/(B̂|B̂)

1

2 . If eigenstate ther-

malization [13–15] holds, θL
tl, d-Ĥ

, Âtl
approaches 90◦.

The inverse participation ratio η, which governs the transi-

tion to thermalizabilty [8, 24, 25], defines the average angle

between the projector to an eigenstate of Ĥ0 and the space of

the integrals of motion of Ĥ :

η ≡ N−1
MC

∑

αg , α0∈[MC]

|〈α0|αg〉|
4 = cos2[θL

d-Ĥ
, (|α0〉〈α0|)]

α0

, (4)

where the space of diagonal operators L
d-Ĥ = L

tl, d-Ĥ ⊕ LU

(compare with the discussion of Îrandom in Fig. 1).

As an application, we now show how to optimize the set

of conserved quantities to be used in a predictively enhanced

thermodynamics, i.e. the GGE, valid for systems anywhere

on the ICT continuum. In all examples studied so far [16, 26]

there is a straightforward map between the integrable system

and an underlying system of free particles, and so it is the oc-

cupation numbers of the one-body eigenstates of the latter that

are included in the Gibbs exponent of the GGE [16, 27–30].

However: (a) it seems that for a disorder-induced localiza-

tion, these occupation numbers do not improve the thermo-

dynamic predictions [30]; (b) not every integrable system can

be mapped to free particles; and (c) for systems in the middle

of an ICT, the failure of the ETH is for all practical purposes,

indistinct from that due to actual integrals of motion.

Recall that the MC ensemble prediction for the infinite time

average of A, EMC[A], has the mean square error (MSE)

VarMC[Aα,α] (Aα,α = 〈α|Â|α〉). Similarly, the MSE of

the MC version of the GGE (where not only the energy, but

additional quantities, normally integrals of motion, are con-

strained to lie in narrow windows; see Secs. SD3 of [22]) is

VarGGE[Aα,α]. Our procedure, which does not assume that

there are any special conserved quantities, is based on the fol-

lowing exact result, where the HS structure naturally emerges:

VarGGE[Aα,α]/VarMC[Aα,α] ≤ sin2Θ +
∣

∣cosΘ
∣

∣O(ǫ) , (5)

where Θ = θ
Îtl,

ˆ̂
PH Âtl

; ǫ = ∆I/

√

VarMC[〈α|Î |α〉] ≪ 1;
ˆ̂
PH

is the “super-operator” that removes the off-diagonal (with

respect to the eigenbasis of Ĥ) matrix elements; ∆I ≡
maxj(Ij+1 − Ij) is the maximal width of the MC window
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FIG. 3. Momentum distribution after a quench. The initial state is

the ground state of a hard-core boson Hamiltonian for N = 4 atoms

on L = 16 sites, with periodic boundary conditions. At t = 0+, a

soft-core repulsion is turned on. The microcanonical (MC) ensem-

ble contains NMC = 300 lowest eigenstates. The GGE ensemble

uses 8 most optimal integrals of motion, each of which was fixed to

a window around its initial state value (except the first, which was

strongly correlated with the energy). The half-width of each window

was 10% of the corresponding MC standard deviation.

for the additional integral of motion; and {[Ij+1 − Ij ]} is the

set of intervals tiling the axis of the integral of motion I (see

Secs. SD2-SD5 of [22]).

The procedure is: let Lo.i. be the linear space of the ob-

servables whose relaxations we wish to describe. Let (Î1)tl be

the diagonal traceless observable that minimizes the HS angle

between itself and Lo.i.; let (Î2)tl be defined similarly, except

that is restricted to lie in the space orthogonal to (Î1)tl; we

keep doing this, always searching in the space orthogonal to

all the integrals of motion previously chosen, till we reach the

desired predictive power.

In Fig. 3 we study a system of 1D hard-core bosons,

with and without an integrability-breaking perturbation by

soft-core interactions (described in Sec. SD7 of [22]), un-

dergoing a quench from the ground state in the integrable

regime to a strongly perturbed regime (η = .023). The

observable of interest is N(k), the infinite time average

of the momentum distribution of the bosons N̂(k) =
1
L

∑L
j=1

∑L
j′=1 e

2πik(j−j′)/L b̂†j b̂j′ , k = 1, . . . , L/2. The

Figure shows that the optimal GGE is indeed superior to the

MC ensemble. Section SD9 of [22] gives a detailed study of

the bound (5) for this system.

Non-thermal behavior has been held to come from either (a)

nontrivial symmetries or the Bethe ansatz [31, 32]; or (b) de-

viations from the ETH [15] due to small system size. In small

systems the two are practically indistinct; there are no obvious

candidates for the relevant conserved quantities. Our theory

offers a unified approach, based on a “blind” optimization of

the GGE. Our next application will be to study how fluctua-

tions and imperfect thermalization impact the sensitivity and

signal-to-noise ratio in matter-wave transistors [33, 34].
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