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We investigate the possibility of realizing a disorder-induced topological Floquet spectrum in two-
dimensional periodically-driven systems. Such a state would be a dynamical realization of the topological
Anderson insulator. We establish that a disorder-induced trivial-to-topological transition indeed occurs, and
characterize it by computing the disorder averaged Bott index, suitably defined for the time-dependent system.
The presence of edge states in the topological state is confirmed by exact numerical time-evolution of wavepack-
ets on the edge of the system. We consider the optimal driving regime for experimentally observing the Floquet
topological Anderson insulator, and discuss its possible realization in photonic lattices.

PACS numbers: 81.05.ue, 03.65.Vf, 73.43.Nq, 71.23.An

Topological states have been an ongoing fascination in con-
densed matter and recently led to the prediction [1–3] and re-
alization [4–6] of various topological phases, including topo-
logical insulators (TIs). TIs possess extraordinary properties
(gapless edge states [7, 8], topological excitations [9]) and
have myriad potential applications from spintronics to topo-
logical quantum computation [10]. One method to generate
topological states is via periodic driving of a topologically
trivial system out of equilibrium. These so-called Floquet
topological Insulators (FTIs) might be obtained by irradiating
ordinary semiconductors with a spin-orbit interaction [11, 12],
or graphene-like systems [13–16]; analogues in superconduct-
ing systems have also been proposed [22, 23]. Topological
phases thus obtained introduce new parameters for control-
ling the phase, such as the frequency and intensity of the drive.
Also, while FTIs have gapless edge states (just as topological
insulators do), they exhibit phases with no analog in equilib-
rium systems [17, 18]. Remarkably, topological Floquet spec-
tra were recently experimentally realized in artificial photonic
lattices where edge transport was observed [19], as well as in
the solid state [20]. The tunability of photonic systems is con-
ducive to exploring a variety of effects, including the influence
of controlled disorder.

Here, we are interested in the interplay of disorder and topo-
logical behavior. In two-dimensional TIs, it has been shown
[21] that ballistic edge modes are robust to disorder as long as
there is a bulk mobility gap. In contrast, disorder completely
localizes the states of trivial non-interacting (and spinless) 2-
D systems. In the presence of strong spin-orbit coupling, how-
ever, disorder can induce a phase transition from a trivial to a
topological Anderson insulator (TAI) phase, which exhibits
quantized conductance at finite disorder strengths. TAIs were
predicted in electronic models [24–27], but have not been ob-
served experimentally.

Can disorder induce topological phases in trivial
periodically-driven systems? Naively, we would think
that disorder would destroy the conditions that give rise to
Floquet topological phases. Nevertheless, we find concrete
examples where disorder induces a topological phase. Here
we investigate such transitions in driven systems, and de-
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FIG. 1: (a) Schematic representation of the system indicating uni-
formly disordered graphene in the presence of a staggered mass po-
tential and a circularly polarized light. Red-Black coloring indicates
the staggered mass in the sublattices A and B, and the variable radius
the disorder potential. (b) The Floquet band structure for the pure
system with parameters, A0 = 1.43, M = 0, and Ω/t̃ = 12. The
system is topological and supports edge states. The bulk gap is given
by the topological mass ∆/t̃ ≈ 0.75. (c) A trivial Floquet band
structure. All parameters are the same as (b) except M/t̃ = 0.85.

scribe their unique properties. The model we consider is
a graphene-like lattice subject to circularly polarized light,
with a staggered potential and on-site disorder. We obtain
the phase diagram as a function of disorder strength by
calculating the disorder-averaged bulk topological invariant
viz., the Bott index. The time-evolution of wavepackets
reveals gapless edge modes in the topological phase. As
we explain below, our model is especially appealing as it is
amenable to experimental realization in photonic lattices.

Our starting point is the tight binding Hamiltonian of a hon-
eycomb lattice subject to circularly polarized light,

H0(t) =
∑

<iα,jα′>

t1e
iAijc†iαcjα′ +Mσzαα′c

†
iαciα′ , (1a)

H(t) = H0(t) + Udis (1b)

where α ∈ {1, 2} indicates sublattices A and B, Aij =
e
~A(t) · (ri − rj) and ~A = A0(sin(Ωt), cos(Ωt)) is the vec-
tor potential for the incident circularly polarized light of fre-
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quency Ω. We consider nearest neighbour hopping with mag-
nitude t1. σz is the Pauli matrix, and M is the staggered sub-
lattice potential. H0(t) represents the clean limit for the sys-
tem and H(t) is the full Hamiltonian with Udis the disorder
potential. The disorder is chosen as an on-site chemical po-
tential, and is diagonal in the real-space representation. We
choose the natural system of units ~ = e = c = 1 and set
lattice spacing a = 1. The bandwidth of the time-independent
part ofH0(t) isW . As we explain below, the model of Eq. (1)
can be directly implemented in the photonic lattice realization
considered by Rechtsman et al. [19].

The idea behind our construction of a Floquet topological
Anderson phase is the following. A honeycomb lattice with a
staggered potential , Eq. (1), has a gapM at both Dirac cones.
A periodic drive alone also induces a gap, with masses of op-
posite sign at the two Dirac cones. To second order, this gap is
simply ±A2

0v
2
F /Ω, for the K and K ′ points. Thus, the drive

induces effectively a Haldane model [28], and yields an ex-
ample of a Floquet topological phase [13, 14]. For weak and
high-frequency (Ω � t1) drives, where perturbation theory
is valid, the drive and the staggering compete. Thus, the sys-
tem is topological when M < v2

FA
2
0/Ω, with a Chern num-

ber |CF | = 1, and trivial otherwise. The key is the effect
of disorder: it diminishes a band gap induced by the drive,
but even more strongly it suppresses the staggering. Starting
from the trivial phase, M > v2

FA
2
0/Ω, an increase in disorder

may reverse this balance, and induce a topological phase (for
a static analog, see Ref. [13]). In [29], we provide a Born-
approximation analysis of the disorder effects on the two gaps
in the static limit.

The explanation above, however, relies on weak, high fre-
quency drive, which effectively produces a static perturbation.
It does not capture the scenario in which the topological prop-
erties of the time-dependent system are a result of a resonance,
connecting states of the original bulk band structure. In addi-
tion, we find that it is necessary to consider strong driving
in order to observe the disorder induced topological phase.
Below, we will establish the existence of the Floquet topo-
logical Anderson phase beyond the limit of a weak, high fre-
quency drive. We will consider strong periodic drives, and
will analyze two distinct frequency regimes: the high fre-
quency regime (Ω > W ), and the low frequency (Ω < W )
regime in which resonances occur within the band-structure.
We will compare the two regimes and show that both of them
exhibit a disorder-induced FTAI phase.

First, let us transform the problem defined in Eq. (1) into a
time-independent Hamiltonian. We define HF as follows:

HF
nm = nΩδnm +

∫ 2π/Ω

0

dteiΩ(n−m)tH(t) (2)

The ’Floquet’ indices n (andm) refer to replicas of the Hilbert
space The eigenstates of HF are the quasi-energies (ε), which
are periodic in a quasi-energy ”Brillouin” zone with period Ω.
We set the boundaries of this zone at ±Ω/2. The off-diagonal
terms (in Floquet indices) of HF

nm emerge from the hopping
term in Eq. (1), (H0)ij = t1 exp(iA0 cos(Ωt + φij)), where

Born Approx.
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FIG. 2: (a) The Bott index,Cb, (in color), as a function of the quasi-
energy and the disorder strength. Edge states are observed in the
region where Cb(0) = 1. The quasi-energy gap,in the Born ap-
proximation, is shown(cyan) as a function of disorder. The sys-
tem parameters are A0 = 1.43, M/t̃ = 0.85 and the size is
(Lx, Ly) = (30, 30). (b) Cb as a function of disorder for differ-
ent staggered masses M/t̃ = 0, 0.5, 0.85, 1 at quasi-energy ε = 0
keeping t1 and A0 same as (a). (c) Cb as a function of disorder for
different driving strengths, A0 = 0.28, 0.48, 0.90 and 1.43, keeping
fixed t1 and M/t1 = 0. We have set Ω/t1 = 12J0(1.43).

(i, j) indicates hopping from site i to j and φij = ±π3 or
0. Therefore,

(
HF
m,m+n

)
ij

= t1i
nJn(A0) exp(iφij), where

Jn(A0) are the Bessel functions of the first kind. Here, to
efficiently use exact-diagonalization, we neglect HF

m,m+n =
0 for n ≥ 2. We also truncate (HF )nm, such that the Floquet
indices obey |n|, |m| ≤ nmax, with nmax determined through
convergence tests. The typical quasi-energy spectrum of our
model is given in Figs. 1 (b) and (c), where we have defined a
renormalized hopping, t̃ = t1J0(A0).

The quasi-energy band structure encodes the topologi-
cal properties of time-periodic Hamiltonians. While non-
interacting equilibrium 2D Hamiltonians with broken time-
reversal symmetry are classified by the Chern number,
periodically-driven systems require a more general topolog-
ical invariant - the winding number - which counts the num-
ber of edge states at a particular quasi-energy [18]. In disor-
dered time-independent systems, the disorder-averaged Chern
number is the Bott index, as defined by Hastings and Lor-
ing [30]. For our periodically-driven model, the disorder-
averaged winding number is calculated using the Bott indices
obtained from the eigenvalues and eigenvectors of HF , de-
fined in Eq. (2) , and truncated to a finite number of replicas
(for full details, see [29]). The Bott index at a particular quasi-
energy, Cb(ε), for the truncated HF , is the number of edge
states at that quasi-energy [18]. Also, the Chern number of a
quasi-energy band is simply the difference in the Bott indices
at the band edges.

Let us first consider the case of Ω > W without reso-
nances. The clean system forms a trivial insulator, with its
quasi-energy spectrum shown in Fig. 1 (c). The Bott index,
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Cb, as a function of disorder strength, U0, and quasi-energy
is shown in Fig. 2 (a). At very weak disorder, the index,
Cb(ε = 0) = 0 in the quasi-energy gap, and it is not quantized
at other quasi-energies, indicating a trivial phase. A topolog-
ical phase emerges as disorder increases, and is manifested
by the Bott index becoming one, Cb(0) ∼ 1. This phase is
induced by both disorder and drive, and, therefore, we iden-
tify it as a Floquet topological Anderson insulator (FTAI).
As expected, varying M while keeping the drive strength
fixed, shifts the position of the trivial-topological transition
(see Fig. 2 (b)). A qualitative description of this transition is
provided by the disorder-averaged Born approximation [29].
Even though, this approximation (Fig. 2(a)) captures this ba-
sic physics of the transition, it overestimates the exact point of
the transition.

At disorder strengths that are considerably larger than the
transition point, the FTAI phase is destroyed and there is lo-
calization at all quasi-energies. This transition is insensitive
to the staggered potential strength, as is evident from Fig. 2
(b); however, it depends on the drive strength (see Fig. 2 (c)).
To observe the FTAI, the trivial-to-topological transition must
occur well before the localization transition. Thus we consider
the effects of strong driving (where A0 ∼ 1). As discussed in
[29], the finite-size dependence of the Bott index as a function
of quasienergy in the topological phase is in agreement with
the presence of an extended state in the bulk. The topological
phase is protected against disorder if there is a ‘mobility gap’
in the spectrum, and some states are delocalized.

Next we numerically examine the existence of edge states
as a diagnostic for topological phases. The time-evolution
operator for H(t) is obtained in discrete time steps, δt us-
ing a split-operator decompositon. The honeycomb lattice
[Fig. 1 (a)] is considered in a cylindrical geometry, with pe-
riodic boundary conditions along X and open ones along Y
(see Fig. 3 (a)). Initializing with a δ-function wavepacket
at r0 ≡ (x0, y0), the Green function, G(r, r0, t), is obtained
from the time-evolution operator, U(t, 0). An evolution for N
time periods (T = 2π/Ω) yields GN (r, r0, NT ) = 〈r|U(t =
NT, 0)|r0〉. The initial position, r0, is chosen to probe edge
or bulk. Compared to the analysis by exact-diagonalization of
HF , in this method we do not need approximations, and large
system sizes are accessible.

The propagator, GN (r, r0, NT ) is the Floquet Green’s
function obtained from HF [29]. So, the quasi-energy eigen-
values and eigenstates are analyzed by Fourier transforming
the Green’s function in time, GN (r, r0, ε). With disorder, we
calculate, gN (r, r0, ε) = 〈|GN (r, r0, ε)|2〉, where 〈.〉 indi-
cates disorder averaging. The extended or localized nature
of the states at quasi-energy ε is given by the spread of gN
defined as λx(N), and λy(N), along X and Y directions re-
spectively.

The time-evolution is carried out for a system with A0 =
1.434, M/t̃ = 0.85, U0/t̃ = 3.5, and Ω/t̃ = 12. These pa-
rameters correspond to a FTAI and, thus we expect ballistic
edge states at ε = 0. The initial wavepackets are chosen in
the A sublattice, on the two edges (cases (I) and (III)), and
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FIG. 3: (a) The cylindrical geometry for the time evolution of a start-
ing δ-function wavepacket. Cases (I), (II) and (III) have the starting
positions, r0 ≡ (x0, y0) in the A sublattice at the left edge, bulk and
right edge with y0/ay = 0, Ny/2 − 1 and Ny respectively. In all
the cases, we fix x0/ax = Nx/2. (b) The spread of gN (r, r0, 0) as a
function of total time of evolution Tf = NT along the X direction,
for r0 corresponding to case (I). λx(N) grows linearly, with a veloc-
ity vedge = (0.09 ± 0.001)a/T . (c) gN = 〈|GN (r, r0, ε = 0)|2〉
in real space as a function of r, for the three cases, with N = 300
and averaged over 400 realizations of disorder . Each sublattice has
Nx×Ny = 100×30 points. The system parameters areA0 = 1.43,
and M/t̃ = 0.85.

the bulk (II), as shown in Fig. 3 (a). After evolution for N
cycles, gN (r, r0, 0), for all three cases is shown in Fig. 3
(c). For cases (I) and (III), g, is extended along X and lo-
calized in Y , indicating the presence of an edge state. The
decay of gN along X after some finite distance is due to fi-
nite time-evolution. The chiral nature of the edge states are
also revealed by the direction in which gN (r, r0, ε) evolves
as a function of N . Fig(3)(b) shows that λx(N) increases
linearly with time of evolution, N , indicating that the edge
states are ballistic and do not backscatter from impurities. In
contrast, bulk states are diffusive in nature until Anderson lo-
calization sets in. A finite amplitude is observed on the edge
when starting with a bulk wavepacket because the bulk local-
ization length is larger than the width of the system, indicat-
ing an overlap of the edge state wavefunction with the initial
wavepacket. We have shown the presence of protected edge
states. This confirms the existence of the FTAI.

This novel phase persists even when there is a resonance
within the band structure(Ω < W ). There, a transition occurs
between an FTI phase and the disorder-induced FTAI phase.
Furthermore, the FTAI phase in this case cannot be under-
stood using perturbative arguments since the resonance alters
the topological nature of all the Floquet bands in the problem
[29]. Fig. 4 (a) shows the quasi-energy spectrum of the clean
system. The gap at the resonance, ε = Ω/2 is topological with
|Cb(Ω/2)| = 2 and, thus, supports two edge states. The gap
at the Dirac points is trivial, |Cb(0)| = 0, since the staggered
massM still dominates over the effect of the drive near ε = 0.
Fig. 4 (b) shows two transitions as disorder is increased. A
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FIG. 4: (a) Band structure for the case of a single resonance. Edge-
states (shown in red) are observed at the two bulk band gaps at
quasi-energies ε/t1 = 0 and Ω/2. The gap at ε = 0 is made triv-
ial by a staggered mass. The system parameters are A0 = 0.75,
M/t1 = 0.3, and Ω/t1 = 9/2. (b) Disorder-averaged Bott in-
dex at a particular quasi-energy gap, Cb(0) (magenta) and Cb(Ω/2)
(blue).The Floquet Hamiltonian is truncated after 9 Floquet bands.
System size is (Lx, Ly) = (30, 30). (c) Disorder-averaged Chern
number, CF = Cb(0)−Cb(Ω/2), of a single Floquet band between
ε = −Ω/2 and ε = 0.

topological-to-trivial transition removes the edge states in the
gap at the resonance (ε = ±Ω/2). Another transition induces
topological edge states at ε = 0. From the finite sizes investi-
gated, the topological to trivial transition at ε = Ω/2 happens
initially and is unrelated to the transition at ε = 0. Finally,
disorder becomes strong enough to localize the entire band,
as in the high-frequency case. The Chern number of the band
between these two quasi-energies, CF = Cb(0) − Cb(Ω/2)
changes from |CF | = 2 to |CF | = 1, and then to |CF | = 0
(Fig. 4 (c)). The intermediate regime, with |CF | = 1, is again
identified as a FTAI - it is a topological state that requires both
disorder and a periodic drive. The fact that this phase exists
even in a system which is non-perturbatively affected by the
periodic drive indicates the universality and robustness of the
FTAI.

This FTAI phase is directly amenable to experimental ob-
servation. Recently a topological band-structure was experi-
mentally demonstrated [19] in a structure composed of an ar-
ray of coupled waveguides (a ”photonic lattice”). There, the
diffraction of light is governed by the paraxial Schrödinger
equation, wherein the spatial coordinate along the waveguide
axis acts as a time coordinate. The guided modes of the
waveguides are analogous to atomic orbitals, and thus, the
diffraction is governed by a tight-binding model. By fabricat-
ing the waveguides in a helical fashion, z-reversal symmetry
is broken, resulting in a photonic Floquet topological insulator
[11], with topologically-protected edge states.

The same system may give a realization of Eq. (1) and the
proposed FTAI phase. The gauge field, A0, in the photonic
system is determined by the helix radius and period. The sub-
lattice potential, M , and on-site disorder, U0, may be imple-
mented by fabricating waveguides of different refractive in-
dices, which is straightforwardly done in the laser-writing fab-
rication process [31]. Since each waveguide can be fabricated
with a specified refractive index, the mass, M and disorder
strength, U0 can be tuned entirely independently. In the sup-
plementary section [29], we fully discuss the relevant exper-
imental parameters in the photonic lattice setup and demon-

strate that the data we have presented here (shown in Figs.
2-4) are entirely amenable to experiment. The topological
transition may be probed by measuring transmission through
the photonic lattice for samples of different disorder strengths.
For small disorder, the presence of a bulk band gap will give
rise to zero transmission through the sample. For disorder
strengths above the transition, the presence of edge states in
the band gap will allow transmission through the sample: a di-
rect experimental observable. Therefore, the FTAI phase may
be implemented using an optical wavefunction in a photonic
crystal structure, as opposed to an electronic wavefunction in
a condensed matter system.

In summary, we have established the existence of a
disorder-induced Floquet Topological Insulator phase. Start-
ing from a clean system that is trivial even in the presence
of time-periodic driving, disorder renormalizes the parameters
of the Hamiltonian to make they system topological. Experi-
mentally the parameters are in a range that can be achieved in
a photonic lattice, and this could be a first experimental real-
ization of the Topological Anderson Insulators.
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