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We perform variational studies of the interaction-localization problem to describe the interaction-
induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we
present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains
at half-filling and zero temperature. While our results indicate that quasiparticle wave functions
remain exponentially localized even in the presence of moderate to strong repulsive interactions,
we show that interactions produce a strong decrease of the characteristic conductance scale g∗

signaling the crossover to strong localization. This effect, which cannot be captured by a simple
renormalization of the disorder strength, instead reflects a peculiar non-Gaussian form of the spatial
correlations of the screened disordered potential, a hitherto neglected mechanism to dramatically
reduce the impact of Anderson localization (interference) effects.
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According to the scaling theory of localization [1],
any amount of disorder suffices to localize all (non-
interacting) electrons at T = 0 in dimension d ≤ 2. In the
presence of electron-electron interactions, however, no
such general statement exists, and the transport behavior
of disordered interacting electrons remains an outstand-
ing open problem [2]. Since the relevant analytical results
are available only in some limiting cases [3–5], comple-
mentary computational methods play a crucial role in
providing insight and information. Several numerical ap-
proaches have been recently utilized to investigate trans-
port properties of these systems, including variational
Hartree-Fock (HF) [6–8] and slave boson (Gutzwiller ap-
proximation) [9] methods, as well as (numerically exact)
quantum Monte Carlo techniques [10–12].

These studies provided evidence that repulsive
electron-electron interactions generally increase the con-
ductance in small systems, with the suppression of elec-
tronic localization being tracked down to partial screen-
ing of the disorder potential. In principle, interactions
could modify either the amplitude or the form of spa-
tial correlations [6] of the renormalized disorder poten-
tial. The former mechanism is known to be significantly
enhanced by strong correlation effects [9] and to survive
even in high dimensions, while the latter is more pro-
nounced [13] in the weak-coupling regime and in low di-
mensions [4].

Despite this progress, several important questions re-
mained unanswered: (1) What is the dominant physical
mechanism for disorder screening, and can it qualitatively
modify the noninteracting picture? (2) Can the interac-
tion effects overcome Anderson localization and stabilize
the metallic phase in low dimensions? The task to care-
fully and precisely answer these important questions in
a model calculation is the the main goal of this Letter.
To do this, we utilize two different variational methods

to describe the statistics of the renormalized disorder po-
tential in an idealized dirty Fermi liquid. In contrast to
most previous attempts, here we perform a careful finite
size scaling analysis of the conductance, which allows us
to reach conclusive results for the transport properties of
the model we consider.
Model and method.— We study the paramagnetic

phase of a disordered Hubbard model

H = −t
∑
i,j,σ

(c†iσcjσ+h.c.)+
∑
i,σ

εiniσ+U
∑
i

ni↑ni↓, (1)

where t is the hopping amplitude between nearest-
neighbor sites, c†iσ

(
ciσ

)
are the creation (annihilation)

operators of an electron with spin σ = at site i, U is the
on-site Hubbard repulsion, and niσ = c†iσciσ. The spa-
tially uncorrelated random site energies εi are drawn from
a uniform distribution of zero mean and width W . We
work at half-filling, in units such that t = a = e2/h = 1,
where a is the lattice spacing, h is Planck’s constant,
and e is the electron charge. To be able to carry out the
large scale computations needed for conclusive finite-size
scaling of the conductance, we focus our attention on a
one-dimensional model. Within the variational descrip-
tion of a dirty Fermi liquid we consider, we expect the
main trends to persist in higher dimensions.

Our starting point is the non-magnetic HF scheme [6],
where the renormalized site energies vi are given by

vi = εi +
U

2
〈ni〉 . (2)

Here, 〈ni〉 =
∑
σ 〈niσ〉, the average site occupation, is

determined self-consistently in the ground state, for each
disorder realization. To cross-check our HF predictions
within a theory that is able to capture strong correla-
tion effects, we repeated the same calculations using the
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slave boson (SB) mean-field theory (i.e. the Gutzwiller
approximation) of Kotliar and Ruckenstein [9, 14], gen-
eralized to disordered systems [13]. The SB theory fea-
tures two local variational parameters: the renormalized
site energies vi and the quasiparticle weight Zi (Zi = 1
within HF) [15–17]. We found that, for moderate inter-
action strength (not close to the Mott transition) and
the low-dimensional situation we consider, both methods
produce qualitatively the same behavior (see Fig. 2 be-
low), dominated by a peculiar type of spatial correlation
of the screened disorder potential. The strong correla-
tion effects (corresponding to Zi � 1) do not appear to
play a significant role in this regime (in contrast to the
situation explored in Ref. [13, 16]). This makes it possi-
ble to search for the relevant screening mechanism within
the simpler and physically very transparent HF scheme,
which we focus on in presenting most of our results.

To study the nature of the ground state we focus on
the dimensionless conductance g, which we obtain apply-
ing the standard Landauer approach to our quasiparticle
Hamiltonian [17–20]. We numerically calculate g in a set-
up where we attach our system to two non-interacting
metallic leads at its ends [21]. For simplicity, we con-
sider the wide band limit, where the leads’ self-energies
are simply given by Σ1(L) = −iη/2 [17], and in all our
results we consider η = 1.0t (we carefully checked that
all our conclusions are independent of η [17]). Since we
are working in one dimension, the conductance displays
wide sample to sample fluctuations. We therefore focus
on its typical value, as given by the geometrical average
g = gtyp = exp ln gs [22, 23]. In every case, we averaged
our results over 2, 000 disorder realizations, which was
sufficient to obtain very accurate results.
Conductance scaling.— In the non-interacting limit,

the dependence of the conductance on disorder and sys-
tem size can be expressed in a simple scaling function
g0 (x), with x = L/ξ, where ξ = ξ (W ) is the localization
length [1, 24]. Specifically, g0 ∝ Ld−1 for g � g∗ (ohmic
regime, x � 1) and g0 ∝ exp (−L/ξ) for g � g∗ (local-
ized regime, x� 1), where g∗ is the characteristic dimen-
sionless conductance which marks the crossover between
these two regimes. In particular, we use the expected
exponential decay of the conductance to determine ξ for
fixed values of W .

Using this scaling Ansatz, we can collapse the system
size dependence of the conductance onto a scaling curve
g (L/ξ) even in the presence of interactions, as shown in
Fig. 1. Note that the error bars are approximately the
size of the data symbols or even smaller. We find that
the localization length increases considerably with U (see
[17] for more details). This enhancement of the localiza-
tion length with interactions has been often observed in
studies of disordered interacting systems [7, 12, 25, 26].
We should nevertheless stress that, despite the huge en-
hancement of ξ with U , there is always an exponential
decrease for large L and we do not see any evidence of
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Figure 1. The conductance scaling function for U = 1.0t
obtained with system sizes L = 60, 80, 100, and 200 at
several disorder levels W ≤ 4.5t. The dashed line is a
modified version of the one-dimensional conductance scaling
function proposed in ref. [22] (see also Eqs. (3) and (5)):
g = g∗/(exp(x) − 1), with x = L/ξ and g∗ = 0.366. In the
inset, the conductance as a function of the disorder level is
shown for fixed system sizes.

extended states.
Interestingly, all the curves g (L/ξ) for different inter-

action strengths can be made to collapse onto a single
universal curve by a proper interaction-dependent rescal-
ing of the conductance, see Fig. 2[27]. We call the con-
ductance rescaling factor g∗(U), and stress that g∗ is a
function of U only. Its U -dependence for both HF and
SB approaches is shown in the inset of Fig. 2, where an
exponential decrease with U fits well the data in both
cases.

The above scaling implies that the full disorder and
interaction dependence of the conductance can be written
as

g = g∗ (U) g0 [L/ξ (W,U)] , (3)

where g0 (x) is the non-interacting scaling function,
g∗ (U) sets the crossover conductance which separates the
weak localization regime (g � 1) from the strongly lo-
calized one (g � 1), and we have explicitly shown all the
W and U dependences.

The scaling function in Eq. (3) can then be used to
generate the beta function β (g) = d ln g/d lnL. It fol-
lows immediately that the only effect introduced by in-
teractions on β (g), as compared to its non-interacting
counterpart, is the rescaling of g by the characteristic
conductance g∗ (U)

β (g) = β0 [g/g∗ (U)] , (4)

where β0 (g) is non-interacting beta function. In partic-
ular, if we use the form of β0 (g) proposed in ref. [22] we
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Figure 2. Conductance scaling curves for different U val-
ues collapse onto a single universal curve after rescaling both
L (by ξ) and g [by g∗ (U)]. In the inset, the characteris-
tic conductance g∗ is plotted as a function of U for both
HF and SB approaches. The behavior is well fitted by
an exponential: g∗ (U) = 1.09(8) exp [−1.09(7)U ] (HF) and
g∗ (U) = 1.05 (2) exp [−1.75 (3)U ] (SB).

obtain

β (g) = −
[
1 +

g

g∗ (U)

]
ln
[
1 +

g∗ (U)

g

]
. (5)

The validity of Eq. (5) can be double-checked through
a direct examination of the behavior of the beta func-
tion for different values of U , as shown in Fig. 3. We
stress that interaction-induced renormalizations of the lo-
calization length alone are not capable of describing the
results of Fig. 3, as they drop out of the beta function.
Finally, using (5), we are able to give an operational def-
inition of the characteristic conductance: g = g∗ (U) at
L = L∗ = (ln 2)ξ (W,U) [17].
Disorder screening and non-Gaussian spatial

correlations.— A commonly invoked explanation
for this conductance enhancement is the fact that inter-
actions act to “screen” the one-body potential [6, 9, 16].
Within a mean-field picture, an electron moving in the
one-body potential vi “sees” site energies renormalized
by the average interaction with the other electrons,
as in Eq. (2). In the inset of Fig. 4, we compare the
conductance in the full HF calculation for W = 0.5t and
U = 1t with the one obtained in the non-interacting
case with an effective disorder Weff obtained from the
width of the vi distribution [17]. It is clear that the
screening effect by itself is not enough to reproduce the
conductance enhancement of the full HF calculation.
This is further confirmed when, after obtaining the fully
converged self-consistent HF values of vi’s, we then
calculate the conductance of a non-interacting system
whose site energies are a random permutation (RP) of
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Figure 3. The beta function for U = 0 and U = 2t. The nu-
merical data are well described by Eq. (5) with g∗ (U = 0) =
1.0 and g∗ (U = 2t) = 0.123. Inset: The curve for U = 2t
collapses onto the non-interacting one with a shift of ln(g∗)
along the horizontal axis.

the same vi’s. Not surprisingly, the conductance of the
randomized system is essentially the same as the one
for the non-interacting system with uncorrelated site
energies distributed uniformly with strength Weff (inset
of Fig. 4). In the main panel of Fig. 4, we also show the
beta function obtained from the RP of the HF results.
As can be seen, it reduces to the non-interacting one.
The effect of a RP of the renormalized site energies is to
eliminate the spatial correlations between them. In the
following we argue that it is precisely these correlations
which shift the crossover scale g∗ (U) to much smaller
values as compared to the U = 0 case.

To further elucidate the pivotal role of spatial correla-
tions, we start by looking at the limit of weak disorder
W → 0. A perturbative calculation shows that the cor-
relations among the vi’s are given by 〈vivj〉 ∼ r−1ij , for
rij � 1, where rij = |ri − rj | [13, 17]. These long-ranged
correlations of the effective disorder potential come from
the usual Friedel oscillations. When properly tailored, a
correlated disorder potential may drive a metal-insulator
transition in d = 1 [28–32]. In order to go beyond weak
disorder, we first generate numerically the two point cor-
relation function 〈vivj〉 from our HF results [17]. We then
implement a standard procedure to generate random vi’s
with gaussian correlations of zero mean and covariance
matrix 〈vivj〉 (note that the generated data have no cor-
relations beyond gaussian). Finally, we calculate the con-
ductance of a non-interacting system with the latter site
energies. Essentially, we want to know if the gaussian
correlations contained in 〈vivj〉 are sufficient to account
for the g∗ renormalization. Fig. 5 displays the results
of this numerical procedure (which we dubbed gaussian
spatial correlations (GSC)). Although the conductance is
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Figure 4. Beta function for U = 1t obtained after randomizing
the self-consistently determined HF renormalized energies vi’s
(red circles; see also the text for an explanation of the proce-
dure). Black and green lines are plotted using Eq. (5). In the
inset, the conductance g is shown as a function of L for: (a) a
system with W = 0.5t and U = 1t in the HF approximation
(black dots), (b) a non-interacting system whose site energies
are a random permutation of the renormalized site energies
vi of the HF approximation (red squares), and (c) a non-
interacting system system with U = 0 andW =Weff = 0.41t
(gold diamonds).

enhanced as in the case of Weff (see the inset of Fig. 5),
the scaling curve coincides with the non-interacting one,
implying there is no g∗ renormalization from purely gaus-
sian correlations.

Taken together, these facts imply that there are signif-
icant non-gaussian spatial correlations in the vi’s which
considerably delay the crossover to the strongly localized
regime. Such correlations introduce a very exciting new
dimension to the physics of disordered systems, because
much of the existing lore about Anderson localization
focused on the effects of random potentials with sim-
ple gaussian statistics - incorrectly assuming that higher-
order correlations play only a secondary role. In the Sup-
plemental Material we further characterize these inter-
site correlations and show how their incorporation is es-
sential for a g∗ (U) < 1 [17].
Extension to higher dimensions.— It is tempting to

speculate on what would happen if our main conclusions
persist in d > 1. If we follow the same phenomenolog-
ical extension as in Shapiro’s work [33], we can write
β̃d (g) = β (g) + d − 1, where β (g) is given in Eqs. (4)
or (5). Graphically, this corresponds to a vertical shift
of β (g) for d = 2, 3. In particular, for d = 3, β̃d (g)
changes sign as expected [1, 24]. By construction, β̃d has
the correct asymptotic limits: β̃d ' d− 2 for g � g∗ and
β̃d ∝ ln(g/g∗) for g � g∗. Assuming, as we found, that
the main effect of interactions is to rescale the crossover
scale g∗, the net result would be to shift this crossover in
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Figure 5. Comparison of the conductance scaling function
of a disordered chain with U = 2t in the HF approxi-
mation and the corresponding non-interacting system with
the same gaussian correlated site energies (GSC) (the inset
shows the unscaled data). Solid lines are drawn by using
g = g∗/(exp(x)− 1), as in Fig. (1).

β̃d to much smaller conductances. This implies a much
more extended ohmic region, even though at T = 0 all
electronic states should still remain localized in d = 2
[12, 26]. In addition, the proposed interaction-induced
renormalization g → g/g∗ should dramatically reduce
the amplitude of the weak-localization correction; pre-
cisely such an effect was observed in d = 2 magnetoresis-
tance experiments [34]. In practice, this would open the
possibility that competing (e.g. Mott or Wigner-Mott)
mechanisms for localization [35, 36] could become domi-
nant well before Anderson localization effects set in.

Conclusions.— Adding interactions to a disordered
system gives rise to new effects that assist transport
even if the single particle states are all Anderson local-
ized. Our careful numerical studies show that the typ-
ical value of the scaled conductance follows the same
non-interacting behavior but with a large decrease of
the conductance scale g∗ (U) signaling the crossover to
the strongly localized regime. Surprisingly, we find that
this reduction is brought about by non-gaussian inter-site
correlations, a mechanism overlooked in previous works.
This opens an exciting new door to understanding the
effects of interactions in disordered systems.
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