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We present experimental evidence showing that an interacting Bose condensate in a shaken optical
lattice develops a roton-maxon excitation spectrum, a feature normally associated with superfluid
helium. The roton-maxon feature originates from the double-well dispersion in the shaken lattice,
and can be controlled by both the atomic interaction and the lattice modulation amplitude. We
determine the excitation spectrum using Bragg spectroscopy and measure the critical velocity by
dragging a weak speckle potential through the condensate – both techniques are based on a digital
micromirror device. Our dispersion measurements are in good agreement with a modified Bogoliubov
model.

PACS numbers: 03.75.Kk, 05.30.Jp, 37.10.Jk, 67.85.-d

In his seminal papers in the 1940s [1, 2], L. D. Landau
formulated the theory of superfluid helium-4 (He II) and
showed that the energy-momentum relation (dispersion)
of He II supports two types of elementary excitations:
acoustic phonons and gapped rotons. This dispersion
underpins our understanding of superfluidity in helium,
and explains many experiments on heat capacity and su-
perfluid critical velocity. What is now called the “roton-
maxon” dispersion in He II has been precisely measured
in neutron scattering experiments [3, 4] and is generally
considered a hallmark of Bose superfluids in the strong
interaction regime.

The roton-maxon dispersion carries a number of in-
triguing features that distinguish excitations in different
regimes. The low-lying excitations are acoustic phonons
with energy E = pvs, where p is the momentum and vs
is the sound speed. At higher momenta, the dispersion
exhibits both a local maximum at p = pm with energy
E = ∆m and a minimum at p = pr with energy E = ∆r.
The elementary excitations associated with this maxi-
mum and minimum are known as maxons and rotons,
respectively. The roton excitations, in particular, are
known to reduce the superfluid critical velocity below
the sound speed. This is best understood based on the
Landau criterion for superfluidity in which the critical ve-
locity set by the roton minimum vc ≈ ∆r/pr is lower than
the sound speed vs. The roton minimum also suggests
the emergence of density wave order [5] and dynamical
instability [6].

To explore the properties of these unconventional ex-
citations, many theoretical works have proposed schemes
for producing the roton-maxon dispersion outside of the
He II system. Many proposals have been devoted to
atomic systems with long-range or enhanced interactions,
e.g. dipolar gases [6–8], Rydberg-excited condensates [9],
or resonantly-interacting gases [10]. Other candidates are
2D Bose gases [11, 12], spinor condensates [13, 14], and
spin-orbit coupled condensates [15, 16]. Experimentally,
mode softening resulting from cavity-induced interaction
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FIG. 1: (Color online) Generation of roton-maxon dispersion
in a shaken lattice. (a) For a single atom, the lattice mod-
ulation creates a double-well structure above a critical mod-
ulation amplitude (top three lines) [21]. In our experiment,
the atoms are prepared at the minimum with zero or negative
momentum (q∗ ≤ 0, red dot); see text. (b) With atomic inter-
actions, a roton minimum (○) and a maxon maximum (◻) in
the excitation spectrum can form. The dashed line indicates
the critical velocity limited by the roton minimum according
to the Landau criterion for superfluidity. Dispersions are up-
ward offset with increasing modulation amplitude for clarity.
The lattice reciprocal momentum is h̵kL = h/λ where λ is the
wavelength of the lattice beams and h = 2πh̵ is the Planck
constant.

has recently been reported [17], which provides strong ev-
idence for an underlying roton-like excitation spectrum.

In this paper we generate and characterize an asym-
metric roton-maxon excitation spectrum based on a
Bose-Einstein condensate (BEC) in a one dimensional
(1D) shaken optical lattice. We implement Bragg spec-
troscopy and identify the local maximum and minimum
in the dispersion associated with the maxon and roton ex-
citations. Furthermore, by dragging a speckle potential
through the BEC we show the reduction of the superfluid
critical velocity in the presence of the roton dispersion.

We create the roton-maxon dispersion by loading a
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3D Bose condensate into a 1D shaken (i.e. periodi-
cally phase-modulated) optical lattice. The lattice shak-
ing technique has been used previously to engineer novel
band structures [18, 19] and to simulate magnetism [20–
22]. Here, we phase modulate the lattice to create
a double-well structure in the single-particle dispersion
ε0(q), for which the ground state has a two-fold degener-
acy; see Fig. 1(a) and Ref. [21]. The double-well disper-
sion results from a near resonant coupling between the
ground and first excited band through lattice shaking
[21], and is a consequence of the parametric instability of
a driven anharmonic oscillator [18]. The dispersion with
quasimomentum q can be calculated based on a Floquet
model [21]. A similar double-well dispersion can also be
realized in a spin-orbit coupled system [23–27].

The double-well dispersion is modified by atomic inter-
actions. Assuming the BEC is loaded into one of the two
dispersion minima at quasimomentum q = q∗, we intro-
duce the canonical momentum p = q − q∗ in the reference
frame where the condensate has zero momentum and en-
ergy. The new dispersion is ε̃0(p) = ε0(p + q

∗
) − ε0(q

∗
).

One finds that the dispersion are no longer symmetric
due to the existence of the other unoccupied minimum;
see Fig. 1(b). Based on a modified Bogoliubov calcula-
tion (see supplementary information and Refs. [28, 29]),
we diagonalize the Hamiltonian to obtain the excitation
spectrum:

E(p) =
√

ε̄(p)2 + 2µε̄(p) +∆ε(p), (1)

where ε̄(p) = [ε̃0(p)+ε̃0(−p)]/2, ∆ε(p) = [ε̃0(p)−ε̃0(−p)]/2
and µ is the chemical potential. For a system with
a double-well structure in ε̃0(p), the theory predicts
a roton-maxon structure with the roton minimum oc-
curing near p = −2q∗; see Fig. 1(b). Creation of an
artificial roton˝ in the dispersion minimum of an anal-
ogous spin-orbit coupled system was theoretically pro-
posed in Ref. [15].

Our experiment to detect this unusual dispersion
starts with an almost pure cesium condensate of N0 =

30,000 atoms loaded into a crossed beam optical dipole
trap (wavelength λ = 1064 nm) with trap frequencies
(ωx, ωy, ωz) = 2π × (9.3,27,104) Hz [21]. We turn on
an additional 1D optical lattice by retro-reflecting one of
the dipole trap beams in the x − y plane at 40○ with re-
spect to the x-axis. The lattice depth is approximately
V = 7 ER, where ER = h × 1.325 kHz is the photon re-
coil energy of the lattice beam. The lattice potential is
phase modulated at 7.3 kHz which is 0.7 kHz blue de-
tuned from the ground to first excited band transition
at q = 0. The phase modulation creates admixed bands,
and the ground band develops two minima in its disper-
sion [21]. We preferentially load the BEC into one of
the minima by providing a momentum kick before phase
modulating the lattice [21]. We define the direction of
the kick as negative, and thus the BEC has a negative
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FIG. 2: (Color online) Excitation spectra. (a) We measure the
excitation spectra with N0 = 30,000 atoms in a harmonic trap
(∎) and in a stationary lattice ( ) with DMD-based Bragg
spectroscopy. The inset illustrates the moving optical poten-
tial with velocity v and periodicity d created by the DMD on
the BEC (tilted ellipse); see text. The solid lines correspond
to the Bogoliubov model with chemical potentials equal to the
trap-averaged values. (b) For a BEC with N0 = 9,000 atoms
loaded in a shaken optical lattice, we measure the excitation
spectrum along the lattice direction. The modulation ampli-
tude (peak-to-peak) is ∆x = 33 nm. The solid line is the best
fit based on Eq. (1). The inset shows a typical atom loss spec-
trum taken at k = −0.38 kL. In both panels, the scattering
length is a = 47 a0.

momentum q = q∗ < 0 and the roton minimum is expected
at p = 2∣q∗∣; see Fig. 1(b).

To probe the dispersion we perform Bragg spec-
troscopy [30] by illuminating the atoms with a sinusoidal
potential moving along the direction of the shaken lattice.
The potential is created from a programmable digital mi-
cromirror device (DMD) and a 789 nm laser, which pro-
vides a repulsive dipole force. The DMD potential with
velocity v and periodicity d (see Fig. 2(a) inset) induces
a Raman coupling between the condensate with p = 0
and finite momentum states with p = h/d. When the Ra-
man detuning E = pv matches the energy of the finite
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FIG. 3: (Color online) Roton/maxon energy vs. scattering
length. (a) We measure the excitation spectra at different
scattering lengths a/a0 = 5(○),13(△),24(◻),40(◇),55(D)
and 70(☆). The condensate number is N0 = 9,000. Solid
curves are fits based on Eq. (1). A global optimization pro-
cedure gives V = 6.7(2) ER and ∆x = 43(3) nm. (b) Ro-
ton energies (○) and maxon energies (◻) extracted from the
fits in panel (a) are shown at different scattering lengths.

Solid curves are fits based on ∆r = A(a/a0)2/5 and ∆m =
B + C(a/a0)2/5, from which we obtain A = h × 9(1) Hz,
B = h × 37(9) Hz and C = h × 8(1) Hz.

momentum state E(p), a resonant transfer will remove
atoms from the condensate. We illuminate the atoms
with the moving potential for 40 ms and measure the
residual condensate particle number after a 30 ms time-
of-flight (TOF). The dispersion can be mapped out by
finding the energy which gives the strongest reduction of
atom number in the condensate for each momentum p.

To test this technique, we compare the dispersions of
the BEC in a harmonic trap and that in a V = 7 ER un-
shaken lattice to Bogoliubov calculations; see Fig. 2(a).
The measurement agrees well with the Bogoliubov spec-
trum using the measured trap-averaged chemical poten-
tials µ = h×120 Hz without the lattice and µ = h×150 Hz
with the lattice.

We now consider the dispersion of a BEC in a shaken
optical lattice, where the roton feature is expected. Here
we observe a distinct difference between the excitations
at positive versus negative momentum. We work with
a modulation amplitude (peak-to-peak) of ∆x = 33 nm
which guarantees a strong double-well feature. Fig. 2(b)
shows the dispersion measurement, which contains a clear
roton-maxon feature at positive momentum (hereafter
the roton direction). In contrast, we do not see this
feature for negative momentum (hereafter the non-roton
direction).

We compare the measured roton spectrum with the
model in Eq. (1). Constraining the model to the ex-
perimental parameters only yields qualitative agreement
likely due to strong interaction effects [31] which effec-
tively modify the modulation amplitude ∆x and lattice
depth V . Thus we fit the data with Eq.(1) and find the
best fit to have µ = h × 58(4) Hz, V = 5.9(1) ER and
∆x = 49(3) nm. The low chemical potential is expected
and comes from the lower condensate number as well as
the weaker, momentum dependent atomic interactions in
the admixed band.

The roton energy is determined by atomic interactions
and can be controlled by tuning the scattering length.
To demonstrate this we prepare samples with the usual
procedure but at a higher scattering length a = 70 a0
followed by ramping the magnetic field to reach the de-
sired scattering length [32]. We measure the excitation
spectrum in the roton direction with p > 0 at 6 different
scattering lengths, shown in Fig. 3(a).

We adopt a global fit to the data in Fig. 3(a) based on
Eq. (1) to determine the roton energy ∆r and the maxon
energy ∆m. Our observation shows that we can exper-
imentally tune the scattering length to vary the roton
energy by a factor of 3. Furthermore, we can use scal-
ing arguments to distinguish the behavior of rotons and
maxons from the more conventional phonons. For small
chemical potentials, the excitation energy for phonons is
well-known to scale as µ1/2, while the roton and maxon
energies are expected to depend linearly on µ; see sup-
plementary information. Furthermore, for an adiabatic
ramp of the scattering length, the chemical potential
should scale as µ = n0g ∝ a2/5 where g ∝ a is the inter-
action strength, and the condensate density in the har-
monic trap is n0 ∝ a−3/5 [33]. Therefore, we plot the
extracted roton and maxon energies as a function of a2/5

as a proxy for chemical potential; see Fig. 3(b). The ob-
served linear dependence confirms the expected scaling
for rotons and maxons.

One significant consequence of the roton dispersion is
the suppressed superfluid critical velocity vc. We mea-
sure the critical velocity of the BEC loaded into the
shaken lattice by projecting a moving speckle pattern
using the DMD. Instead of using a single laser beam [35–
37] or a lattice with a definite spatial frequency [34], our
speckle pattern contains a broad spectrum of wavenum-
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bers up to the resolution (k ≈ 0.55 kL) of our projection
system. Furthermore, the potential remains locally per-
turbative (≈ h × 1.1 Hz) to prevent vortex proliferation
[38–40]. When the velocity of the speckle pattern reaches
or exceeds the critical velocity, atoms are excited from
the condensate. To prevent excitation in the low density
tail [34], we digitally mask out the region of the speckle
pattern which could overlap with the edge of the cloud.

We observe a clear threshold in speckle velocity above
which the condensate number decreases; see Fig. 4(a).
The experimental sequence is similar to that used for
Bragg spectroscopy: we illuminate the cloud with a mov-
ing speckle pattern for 100 ms followed by a 30 ms TOF.
To find the critical velocity, we fit the remaining conden-
sate number with a constant value intersecting a linear
decay. The intersection point determines the critical ve-
locity vc. Above a critical value, we observe the conden-
sate fraction decreases linearly with the speckle velocity.
This is consistent with a previous observation of the crit-
ical velocity in a Bose superfluid [34], along with a recent
calculation [41].

In order to understand the emergence of the roton-
maxon dispersion, we measure critical velocity in both
the roton direction p > 0 and the non-roton direction
p < 0 with increasing modulation amplitude ∆x; see
Fig. 4(b). In order to maintain similar chemical poten-
tial, we prepare the samples with a large ∆x = 33 nm
and slowly ramp ∆x to the desired value. For small fi-
nal ∆x < 12 nm, vc is the same in both directions and
decreases as we approach the critical value ∆xc ≈ 12 nm
(phonon mode softening). When the gas enters the fer-
romagnetic phase (∆x > 12 nm) [21], vc increases imme-
diately along the non-roton direction, while in the roton
direction vc remains small.

We compare the measurement with the critical velocity
based on the Landau criterion vL = min∣E(p)/p∣. As the
experiment conditions closely resemble those in Fig. 2(b),
we evaluate the critical velocity with µ = h × 58 Hz,
V = 5.9 ER and ∆x scaled by 1.5, the parameters which
best fit that dispersion measurement. The calculated
vL, shown as dashed lines in Fig. 4(b), displays a dis-
parity between the roton and non-roton directions for
∆x > 15 nm, in agreement with our observation. Our
critical velocities, however, are significantly lower than
vL. In early BEC experiments [36, 37], low critical veloc-
ities were observed and explained by the large obstacles
that disrupt the superflow and spin off vortices [38–40].
In our experiment with weak speckle potential, a likely
scenario is that the critical velocity is limited by exci-
tations generated in the low density regions above and
below the cloud along the DMD projection axis.

In conclusion, we observe a roton-maxon dispersion of
a BEC in a shaken 1D optical lattice based on three
pieces of evidence: the many-body excitation spectrum,
the dependence of the excitation energies on the atomic
interactions, and the superfluid critical velocity measure-
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FIG. 4: (Color online) Superfluid critical velocity. (a) We
measure the residual condensate number fraction after drag-
ging a speckle pattern through the center of the cloud at dif-
ferent velocities v along the roton direction (p > 0, solid dots)
and the non-roton direction (p < 0, solid squares). The solid
lines are fits used to determine the critical velocity. The in-
set illustrates the experimental scheme; see text. (b) Critical
velocities as a function of modulation amplitude are shown.
Above the critical modulation amplitude ∆x > 12 nm, the
critical velocity is significantly lower in the roton direction.
Our measurement is compared with the critical velocity cal-
culated from Eq. (1) using Landau criterion (dashed lines). In
both panels, the scattering length is a = 47 a0 and the initial
condensate number is N0 = 9,000.

ment. Our results agree well with the Bogoliubov calcula-
tion and suggest the roton/maxon excitations are distinct
from acoustic phonons. Our experiment demonstrates
that shaken optical lattices are a convenient platform to
generate new types of quasi-particles in a dilute atomic
gas, allowing future study on their dynamics, stability,
and interactions. For instance, knowing the quasiparti-
cle dispersion should allow a future experiment to create
macroscopic numbers of rotons, leading to possible roton
condensation [41, 42], and separation of the rotons into
domains. In-situ imaging would allow direct observation
of the temporal evolution of such states.
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