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A cone-shape meniscus of electrified fluids, often called a Taylor cone, is observed in rain drops 

and lightning and employed in various physical instruments and experimental techniques, but the 

way it evolves from a rounded shape to a cone is a longstanding puzzle. Earth gravity and 

microgravity measurements on the meniscus whose height is just shy of droplet ejection reveal 

that field-driven cusp evolution exhibits a universal self-similarity insensitive to the forcing field 

and scaled by the fluid surface tension and density. Our work paves the way for dynamic control 

of field driven phenomena in fluids.  
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The conical meniscus of an electrified fluid with spontaneous sparks and fluid ejection has 

fascinated scientists for centuries [1-3]. This ubiquitous phenomenon is observed in rain drops 

and lightning and employed in electro-spraying and ink jet printing [2,3], mass spectrometry 

[4,5], ion beam sources [6], plasma technology [7], fabrication of synthetic fibers [8,9] and 

nanostructures [10]. Taylor [11-13] showed that surface tension and electric forces form a 

steady-state conical meniscus with a semi-vertex angle of 49.3°. The initial loss of meniscus 

stability in a sufficiently strong field can be easily predicted by linear analysis [2,12]. However, 

field-driven meniscus evolution from a rounded shape to a cone is a longstanding puzzle in this 
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well-studied phenomenon as it overlaps with spontaneous fluid ejection. In this Letter, we 

report data on the meniscus whose height is just shy of droplet ejection. Earth gravity and 

microgravity measurements, spanning more than two orders of magnitude in length and time, 

reveal that field-driven cusp evolution exhibits a universal self-similarity insensitive to the 

forcing field while a 50% increase in applied voltage shortens the overall time for the meniscus 

to rise by more than an order of magnitude.  

Until now, two types of apparatus pioneered in 1914-1931 by Zeleny [14-16], Wilson and 

Taylor [17], Nolan [18] and Macky [19] have been used to electrify fluids. In type [14-17], 

voltage is applied to two bare electrodes, one immersed in the fluid and the other placed at a 

certain distance away from the fluid. In type [18,19], a drop falls through or levitates in a field 

produced between two electrodes. The conditions of meniscus evolution and fluid ejection are 

similar in the apparatuses of both types. Spontaneous fluid ejection in these apparatuses 

effectively prevents study of cusp dynamics. The apparatus in Fig. 1 was designed to create and 

control a cone-shaped meniscus by limiting the buildup of an electric charge on its surface and 

thus allow a dynamic regime to be investigated without drop ejection. This is achieved by 

separating a drop from the ground electrode with an electrically insulating film that does not 

allow electric current to flow between the electrodes (item 4 in Fig. 1). Due to the film presence, 

the drop serves as a floating electrode capacitively coupled to the electrodes (items 2&5 in Fig. 

1). Details of the setup are listed in Supplemental Material [20]. The energized electrode is a 

metal tube fitted on an insulating nozzle 0.2mm above the nozzle exit. A drop is ejected through 

the nozzle onto the insulating film. The distance between the drop apex and the nozzle exit is set 

to 0.6mm. As the electric stress exerted on a fluid is proportional to the square of the field 

strength, a field is generated by a train of rectangular voltage pulses of oscillating polarity (slew 
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rate 0.75kV/μs) to keep the electric stress at a constant level similar to classical experiments [11-

19] but reduce accumulation of charge on the drop surface due to the voltage reversals.  

Experiments were conducted over a wide range of fluid properties [20, Supplemental Table 

1]: density ρ ~1g/cm3, viscosity η ~1−76cP, conductivity σ ~0.02−104 S/cmμ , dielectric 

constant ε ~2.7−90, surface tension γ ~30−72dyn/cm, contact angle on the insulating film (item 

4 in Fig. 1) θ ~9−560, charge relaxation time et = 0εε σ ~ 1ns 13 s− μ  with the vacuum 

permittivity 0ε . The fluids as numbered in all figures were: 1) deionized (DI) water; 2) DI-water 

with 0.1M KCl; 3) polyethylene glycol PEG 200; 4) polymer solution simulating human saliva; 

5) low-conducting lubricant with 0.02wt% graphene. The application of high-voltage pulses to a 

drop of pure lubricant caused the meniscus to oscillate but did not produce a pointed protrusion. 

As the lubricant conductivity was increased by adding graphene flakes, a drop formed a cone-

shaped meniscus. Measurements under microgravity (1.5 gμ ) on the International Space Station 

(ISS) allowed length scales to be expanded from the sub-millimeter to the centimeter range.   

Depending on the pulse voltage Vp and length Tp (Fig. 1), three modes of meniscus evolution 

were observed under earth gravity [Fig. 2(a) for DI-water and similar for other fluids]. Mode 1 

occurs when the electric force is weak compared with the capillary and gravity forces. The fluid 

level rises to form a stationary bell-shape hump in the high field region under the nozzle. When 

Vp exceeds the instability threshold, the portion of the fluid meniscus under the nozzle rises, 

oscillatory or monotonically for larger voltage and fluid viscosity, and produces a pointed 

protrusion. The threshold field ~2kV/mm is similar to the value observed in conventional 

apparatuses [12,21].  
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Mode 2, the subject of this work and referred to as dynamic Taylor cone, is attributed to 

voltages forming a cone-shaped meniscus that rises to a certain height, recedes, and then repeats 

itself again and again. Remarkably, meniscus evolution of low volatile PEG 200 drop, Fig.3(a), 

does not change throughout eight-hour testing (1.8·105 oscillations). The overall time for the 

meniscus to rise is governed by the pulse voltage. The increase of Vp from 2kV to 3kV shortens 

it by more than an order of magnitude [Fig.2(b,c) for DI-water and similar for other fluids]. As 

frequency in varying the pulse polarity increases, meniscus oscillations gradually become more 

irregular since a change in the voltage polarity disturbs the drop by reversing the sign of charge 

induced on the fluid surface. To graphically display the effects of disturbances, we plot a series 

of consecutive time instances, tm, in which the drop apex rises to maximum height, hm, against 

the amount of time, tp, that passed in each such instance after the last change in the pulse polarity 

[Fig.2(d-f) for DI-water and similar for other fluids]. Meniscus oscillations at a fixed pulse 

polarity, 0< tp < Tp, are represented on this diagram with a set of neighboring points in the 

direction of increasing tp. Patterns of well-ordered points demonstrate periodicity of cone-shaped 

tips formed at long pulses, whereas randomly scattered points show irregular cone formation at 

short pulses. However, a cone is remarkably insensitive to disturbances and, once formed, 

evolves in the same way, Fig. 3(b). 

Mode 3 occurs for larger voltages. The meniscus develops a cone-shaped tip, ejects droplets 

and then recedes. The process repeats itself several times and rapidly comes to an end when the 

drop volume becomes depleted. As the air dielectric strength ~3kV/mm, it begins to break down 

over a rising pointed protrusion in modes 2 and 3 and becomes partially conducting. In mode 2, a 

conducting channel bridges the air gap earlier than the meniscus ejects fluid. Once it forms, 

buildup of charge on the insulating film under the drop (item 4 in Fig. 1) reduces the field 
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strength in the gap and chokes the electric current flow similar to that in dielectric-barrier 

discharge in air [22,23]. The charge transferred through the air gap produces a low current 

(estimated ~nA), thus no light emissions or sparks were observed. Self-arresting of fluid ejection 

in mode 2 is achieved by designing the electrical capacitance between the drop and the ground 

electrode to be much larger than the capacitance between the drop and the energized electrode. 

The voltage across the air gap therefore prevails when a pointed protrusion rises but reduces 

drastically as a discharge occurs.  

Microgravity experiments on DI-water drops of several centimeters in size were carried out 

aboard ISS in Expedition 30/31. Voltage was produced with a belts-and-rollers type Van de 

Graaff generator assembled from LEGOs (details in Supplemental Material [20]). Water placed 

on the 9.8-cm diameter collector sphere formed a cone-shaped meniscus when another drop 

situated on an electrically insulating support was brought nearby to serve as a floating electrode 

for increasing the local field (photos in Figs.4,5). Three modes of meniscus evolution that 

appeared in earth gravity experiments were observed on ISS. Similar to the apparatus in Fig. 1, 

buildup of charge on the insulating support choked the electric current between the drops when a 

discharge occurred. A cone-shaped tip formed by a drop either emitted some fluid or receded if 

charge leakage weakened the electric force. Observations of microgravity dynamic Taylor cones 

in mode 2 are presented here. 

The exceptional robustness of mode 2 made it possible to study the cusp evolution over a 

broad range of length and time scales. As a protrusion develops, its round top shrinks 

approaching the cone shape. The limiting value of its semi-vertex angle averaged over all data 

under earth gravity is 48.30±1.70 and 46.80±2.40 under microgravity that is close to the Taylor 

angle 49.3° [11]. Displacement of the drop apex h is plotted in Fig.4 over the time period of the 



6 

 

constant vertex angle. This log-log plot demonstrates the power-law scaling over two orders of 

magnitude in length and time with the slope 0.64 0.04±  remarkably close to 2/3 recently 

observed in computer simulations [24,25] of the cone rise. The slope changes to 0.42 in mode 3 

regime when a cone-shaped tip ejects droplets [26]. Starting with the 2/3 power law, we can form 

a dimensionless parameter  

=ξ ( ) ( )
1/32

m mh - h / γ t - t ρ⎡ ⎤
⎣ ⎦                                                                                                           (1)  

that measures the cusp self-similarity before the singularity. All earth and microgravity 

measurements in Fig. 4 collapse on a value of =ξ 0.30±0.05. The meniscus semi-vertex angle θ  

and ξ  converge gradually to their limiting values as h approaches hm regardless of the drop 

volume, voltage and gravity, even though ξ  monotonically increases for small drops and 

decreases for large drops (Fig. 5). Scaling of the instantaneous meniscus shape, relative height 

( ),H r t  vs. radius r , with the instantaneous distance of the tip from its maximum 

( )0,mh h H t− =  demonstrates the universal self-similarity of cusp evolution (Fig.5). The self-

similarity of field-induced cusp evolution appears to be independent of the forcing field and 

surprisingly resembles self-similarity observed in breakup of liquid drops, sheets and eruption of 

jets in the absence of a field [3,27-30] when the surface tension and inertial forces dominate.  

Now we present a scaling analysis of meniscus evolution. Relative contributions of the 

gravity, viscous, electric, and surface tension forces in its initial stage are represented [2,3] by 

the gravity Bond number Bog= 2
DgRρ γ , the Ohnesorge number Oh= DRη ρ γ , and the pulse 

electric Bond number Boe= 2
0 2ext DE Rε γ  with the gravitational acceleration g, the drop diameter 

2 DR , and the external field strength estimated as ext pE V S= , where S  is the separation 
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between the energized electrode and the drop apex (Fig. 1). Mode 2 was observed at Bog~0.04-

0.08, Oh~0.005-0.48, Boe~0.2-1 in earth gravity and Bog<~10-4, Oh~10-3, Boe~2.7-6.5 in 

microgravity [20] when the electric, inertial and surface tension forces dominated. The self-

similar cusp evolution described by Eq. (1) with ξ ≈ 0.3 is not affected by the fluid viscosity as it 

occurs at hm-h and tm-t (Figs. 4,5) much greater than the viscous length Lη=η2/γρ and time 

tη=η3/γ2ρ scales where viscous forces are important [3]; Lη~0.014-119µm, tη~0.0002-206µs for 

tested fluids [20, Supplemental Table 1]. Relative contributions of inertia and surface tension to 

unsteady flow are represented by the Weber number We=ρv2L/γ measuring the ratio of the fluid 

kinetic energy to its surface energy [3] and the ratio of the fluid acceleration force to the surface 

tension force A=ρL2dv/dt/γ, where L and v are the characteristic length and velocity. Taking hm-h 

and dh/dt from Eq. (1) with ξ ≈ 0.3 for L and v in the cusp region whose radial and longitudinal 

scales are of the same order (Fig.5), we obtain We=2A~0.012. Since the viscous and inertial 

forces are relatively small, the capillary and electric pressures are nearly balanced in the cusp 

region. Therefore, the field in air at the cusp surface can be approximated by Taylor’s solution 

for a cone in equilibrium aE ~ 02 Rγ ε  [11] with the radius of cusp curvature R  scaled with hm-

h (Fig.5). The cusp charge increases with decreasing hm-h. To estimate the field fE  in fluid, we 

use the balance equation for charge transport to the cusp surface by conduction 

( )0 a f fd E E dt E− =ε ε σ  that yields ~f aE E ( )e mt t t− <<1 as the charge relaxation time te is 

shorter by several orders of magnitude than the period of cusp motion (Fig. 4). Since fE  is 

negligible, the field around the cusp is well approximated by Taylor’s solution for an 

equipotential cone in equilibrium [11] that yields the limiting value of the semi-vertex cusp angle 

close to 49.3° (Fig. 5). As aE >> extE  in the range of hm-h where ξ ≈ 0.3 (Figs.4,5), cusp motion 
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is not affected by applied voltage. In fact, scaling of the instantaneous cusp shape given by Fig.5 

and Eq. (1) represents the self-similar solution of electro-hydrodynamic equations for an inviscid 

conducting fluid with the electric pressure scaled by the capillary pressure.  

The cusp evolution generates a vortex flow that can affect mixing and separation processes in 

the drop (Supplemental Fig. 1 [20]). Examples are shown in Supplemental Figs. 2(a) [20], where 

polystyrene spheres are concentrated under the conical apex or dispersed, and Supplemental Fig. 

2(b) [20], where gypsum rapidly precipitates from a supersaturated aqueous solution.  

In summary, we have revealed the universal self-similarity of the field-induced meniscus 

evolution from a rounded shape to a cone that is scaled by the fluid surface tension and density. 

The proposed non-contact technique paves the way for dynamic control of field driven 

phenomena in widespread applications [2-10,31].  

We are thankful to Andreas Acrivos, Osman A. Basaran and Paul H. Steen for simulating 

discussions and comments on interpretation of experimental data. E.E., Y.S., B.K. were 

supported by NASA grants NNX09AK06G and NNX13AQ53G.  
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FIGURES 

 
FIG 1 (color online). Concept of experimental apparatus. 1, electrically insulating nozzle; 2, 
energized electrode; 3, drop; 4, insulating film; 5, ground electrode; 6, insulating cover of 3D 
movable stage; Vp, pulse voltage; Tp, time of reversing voltage polarity.  
 
 
 

 
FIG 2 (color online). Deionized water. Earth gravity experiments on 10-µL drop. (a) Vp-Tp 
diagram for modes 1, 2, 3 of drop evolution. Photos illustrate drop behavior. (b,c) Displacement 
h of drop apex as a function of time t in mode 2 at Tp=0.5s and Vp=(b) 2kV, (c) 3kV. Cones 
appear in rising at h= (b) 0.32±0.03mm; (c) 0.22±0.02mm. Larger h at 3kV caused by drop 
spreading. (d,e,f) Mode 2. Time instance tm when drop apex reaches its maximum displacement 
hm vs. time tp passed after the last voltage polarity reversal, circles and triangles refer to rounded 
and pointed ends. Vp/Tp=(d) 2kV/0.5s, (e) 2kV/2.5ms, (f) 3kV/0.5s. 
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FIG 3 (color online). Earth gravity experiments. Displacement h of 10-µL drop apex as a 
function of time t-tm, tm is the instance of rising to maximum hm. (a) Meniscus evolution of low 
volatile PEG 200 drop throughout eight-hour testing at Vp/Tp=2kV/0.5s. Cones appear at 0>t-
tm>-3.0±0.21ms, h>0.31±0.02mm. Symbols refer to testing time. Photo at 8 hrs. (b) Polymer 
solution simulating human saliva forms cones at 0>t-tm>-1.67±0.15ms, h>0.32±0.02mm for 
Vp=2kV. Symbols refer to time of changing voltage polarity Tp. Cones form sporadically at 
Tp=5ms and 2.5ms and periodically at longer Tp. Photo at Tp=2.5ms.  
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FIG 4 (color online). Dynamic Taylor cone. Displacement h of drop apex as a function of time 
tm–t, tm is the instance of rising to maximum hm. Filled symbols refer to experiments under earth 
gravity on 10-µL drops at Vp=2kV and 3kV with Tp=0.5s. Data and error bars from 20 randomly 
chosen videos of three drops for each fluid. Open symbols refer to data under microgravity on 
three 0.5-mL DI-water drops. Photos show DI-water drops.  
 

 
FIG 5 (color online). Meniscus rising in mode 2. Semi-vertex angle θ and parameter ξ  as a 
function of hm-h, and the instantaneous meniscus shape scaled with the instantaneous distance of 
the tip from its maximum hm-h. (a) Experiments under earth gravity on 10-µL drops at Vp=2kV 
and 3kV with Tp=0.5s. Data and error bars for θ, ξ  from 10 randomly chosen videos of three 
drops for each fluid; six instantaneous shapes of a drop at 2kV used to construct the scaled 
meniscus shape. (b) Experiments under microgravity on DI-water drops. Filled and open 
symbols refer to ten 10-mL drops (top photo) and three 0.5-mL drops (bottom photo); five 
instantaneous shapes of a 0.5-mL drop used to construct the scaled meniscus shape. 
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