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We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of
co-propagating-wave resonances are transformed by rotation to counter-propagating ones, leading to
a striking change of emission directions. The rotation-induced relative change in output intensity
increases exponentially with cavity size, in contrast to the linear scaling of the Sagnac effect. By
tuning the degree of spatial chirality with cavity shape, we are able to maximize the emission
sensitivity to rotation without spoiling the quality factor.

PACS numbers: 42.55.Sa, 42.60.Da, 42.81.Pa

Light propagation in rotating systems has been studied
as one of the most fundamental problems of electromagnet-
ics [1–7]. So far the majority of the studies have focused
on conservative systems that are described by Hermitian
Hamiltonian [8–10]. It is of fundamental interest to ex-
plore non-Hermitian systems in the rotating frame. For
example, in an open cavity, both the resonance frequency
and decay rate are modified by rotation [11, 12]. Recent
studies revealed an exponential dependence of the decay
rate on the rotation speed, in contrast to the linear scaling
of the frequency shift (Sagnac effect)[12]. Moreover, the
rotation induces mode coupling in an open microcavity,
resulting in crossing or anti-crossing of decay rates and
abnormal Sagnac effect [13]. These studies illustrate that
the open systems display much richer behaviors in the
rotating frame than the closed ones.

In this Letter we investigate the interplay between
openness and chirality of rotating microcavities. Chiral-
ity has important implications in many areas of physics.
Optical resonators may acquire structural chirality from
shape deformation or boundary scattering, which induces
asymmetric coupling between the clockwise (CW) and
counter-clockwise (CCW) propagating waves in the cavity
[14–16]. With open boundary, the cavity resonances are
dominated by either CW or CCW waves, thus possessing
a preferred sense of rotation [17–22]. Such cavities with
broken chiral symmetry are called chiral cavities.

However, it is not known what happens if a chiral cavity
rotates, e.g., whether the Sagnac effect would survive in
the absence of chiral symmetry, and how the intrinsic
chirality is affected by rotation. In a non-rotating cavity
with chiral symmetry, every resonance has balanced CW
and CCW wave components, and the output intensity
profile is symmetric. Rotation makes individual mode
dominated by either CW or CCW wave, thus introducing
asymmetry in the far-field pattern if CW and CCW waves
have different output directions [23]. In a chiral cavity,
even without rotation the breaking of chiral symmetry
can make the far-field pattern asymmetric; it is not clear

how rotation would further modify the emission profile.

To answer these questions, we investigate open micro-
cavities with broken chiral symmetry in the rotating frame.
Our calculations show that a quasi-degenerate pair of co-
propagating-wave modes in the non-rotating chiral cavity
evolve to counter-propagating ones at high rotation speed.
The intrinsic chirality is thus removed by rotation, and
the Sagnac effect is similar to that of a non-chiral cavity.
However, the flip of propagation direction for one of the
quasi-degenerate modes will lead to a striking change of
its far-field pattern, as long as the CW and CCW waves
have distinct output directions. By tuning the cavity
shape, we are able to vary the degree of chirality without
spoiling the quality factor [24]. The maximal chirality
results in the largest difference in CW and CCW outputs,
making the emission profile most sensitive to rotation.
The surprising enhancement of rotation sensitivity of chi-
ral microcavities may open up the possibility of on-chip
rotation sensors.

Let us first model a non-rotating chiral cavity. The
asymmetric coupling between CW and CCW propagating
waves can be described by an effective Hamiltonian [15,
22].

H0 =

(
ω0 0
0 ω0

)
+

(
Γ V
ηV ∗ Γ

)
, (1)

where ω0 is the frequency of the unperturbed CCW and
CW wave components. Their coupling leads to an overall
frequency shift Γ, and asymmetric transition elements V
and ηV ∗, where the deviation of |η| from unity represents
the degree of asymmetry. Diagonalization of H0 gives the
eigenfrequencies ω± = ω0+Γ±√η|V | [24]. The frequency
splitting ∆ω0 = 2

√
η|V | results from the coupling of CW

and CCW waves. The eigenvectors are composed of CW
and CCW waves with relative intensity ratio |η|, thus
a higher asymmetry of the coupling leads to a stronger
chirality of the eigenmodes.



2

When the cavity rotates, the Hamiltonian becomes [24]

H = H0 +

(
∆ 0
0 −∆

)
, (2)

where ±∆ represents the frequency shift of CCW/CW
wave by rotation. We assume the rotation speed is
slow enough that |∆| is linearly proportional to the
rotation frequency Ω. For simplicity, we set ∆ = Ω.
The frequency splitting becomes ∆ω = 2

√
η|V |2 + ∆2 =

2
√

(∆ω0/2)2 + Ω2 [24]. At low rotation speed, the ad-
ditional frequency splitting induced by rotation (Ω) is
much smaller than the original splitting (∆ω0), so the
total splitting remains nearly constant ∆ω ' ∆ω0. Only
when Ω becomes comparable to ∆ω0, the rotation-induced
splitting becomes significant, and ∆ω starts to grow with
Ω. Eventually at Ω� ∆ω0, ∆ω ≈ 2Ω, the linear increase
of ∆ω with Ω recovers the Sagnac effect. Hence, the
frequency splitting at Ω = 0 causes a “dead zone” for
the Sagnac effect [9]. In a chiral cavity the dependence
of ∆ω on Ω is identical to that in a non-chiral cavity, as
long as the value of η|V 2| is kept the same [Fig. 1(a)].
Although without rotation both modes in the chiral cavity
are dominated by CCW (CW) traveling waves for |η| < 1
(|η| > 1), one of them is transformed into a CW (CCW)
traveling wave mode by rotation, and its frequency shifts
in the opposite direction to the other mode, producing
the same Sagnac effect as in the non-chiral cavity.

Next we investigate how the emission patterns of chiral
microcavities are modified by rotation. Without rotation,
a pair of quasi-degenerate modes are expected to have
similar far-field patterns, because they are both dom-
inated by either CW or CCW traveling waves. With
rotation, one of them flips the propagation direction, and
its far-field pattern will change dramatically if the CW
and CCW waves have distinct output directions. To
illustrate this, we simulate numerically open chiral cavi-
ties. We choose dielectric microdisks with the shape of
asymmetric limaçon, which have high quality (Q) factor
and small frequency splitting ∆ω0 [22]. The microdisk
can be regarded as a two-dimensional (2D) cavity as the
disk thickness is much smaller than the radius. In the
polar coordinates, the cavity boundary is described by
r(θ) = R[1 + ε1 cos(θ) + ε2 cos(2θ + δ)], where R is the
radius, ε1 and ε2 are the deformation parameters, and δ
determines the degree of chirality (to be discussed later).
We calculate the resonant modes in the non-rotating cav-
ity using the finite-difference frequency-domain (FDFD)
method [25]. As an example, we investigate a pair of
quasi-degenerate modes with the normalized frequency
kR ' 6.2 in a cavity of δ = 1.94 (k = 2π/λ, and λ is the
wavelength in vacuum). Both modes contain more CW
wave components than the CCW ones [24]. Their spatial
chirality is characterized by the difference between CW
and CCW wave intensities normalized by the (dominant)
CW wave intensity, and its value is equal to 0.25. Both
modes generate directional emissions, as shown in Fig.
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FIG. 1: (Color online) Comparison of Sagnac effect in a rotat-
ing microcavity with chiral symmetry (η = 1, dashed line) and
without chiral symmetry (η = 0.1, solid line). The value of
η|V |2 is kept the same. (a) (Dimensionless) frequency splitting
for a pair of quasi-degenerate modes as a function of rotation
frequency Ω. (b,c) Evolution of CW (thick line) and CCW
(thin line) traveling-wave components in the quasi-degenerate
modes with rotation. In the symmetric cavity (η = 1), at low
rotation speed the eigenmodes remain standing-wave modes
with equal weights of CCW and CW components, and their
frequency difference is barely changed by rotation. When the
rotation speed is sufficiently high, one mode evolves to a CCW
traveling-wave mode, the other one to a CW traveling-wave
mode; and their frequency difference starts to grow signifi-
cantly with Ω. In a chiral cavity (η = 0.1), the evolution of
frequency splitting with rotation is identical to the symmetric
cavity. Without rotation both modes are dominated by CCW
traveling waves, but one of them (b) transforms into a CW
traveling wave mode at high Ω.

2(a). By separating the CW and CCW wave components
outside the cavity, we find the main output direction of
CW wave is θ ' 0.7 , and for the CCW wave θ ' 2.8 [Fig.
2(b)]. Due to the dominant presence of CW wave in the
quasi-degenerate pair, their far-field patterns are similar
to that of the CW wave.

Next we consider the asymmetric limaçon cavity rotate
with a constant angular velocity Ω around a fixed axis
perpendicular to the cavity plane. In the rotating frame
where the cavity is stationary, the Maxwell equations
remain the same but the constitutive relations are mod-
ified [26, 27]. Various methods have been developed to
study photonic structures in the rotating frame [4, 27–
32]. Here we used a finite-difference time-domain (FDTD)
algorithm, adapted to the rotating frame [12], to calcu-
late the mode profile and emission pattern. As shown
in Fig. 3, one of the two modes in Fig. 2 switches from
CW to CCW traveling-wave, while the other one remains
CW. Consequently their output directions become very
different.

The striking change of output direction by rotation
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FIG. 2: (Color online) Far-field emission intensity patterns
of a pair of quasi-degenerate modes (λ = 598 nm) in a non-
rotating dielectric disk (n = 3.0) of asymmetric limaçon shape
(R = 591 nm, ε1 = 0.1, ε2 = 0.075, δ = 1.94). (a) Angular
distributions of emission intensities at a distance of r = 50R
from the cavity center for both modes, which have similar
output directions. (b) Far-field patterns of CW (red solid
line) and CCW (blue dashed line) wave components in the
resonances, exhibiting distinct output directions.

originates from the breaking of chiral symmetry in the
open microcavity. Even when the cavity is at rest, the
resonances already acquire a preferred sense of rotation,
as the quasi-degenerate pairs are both dominated by CW
or CCW traveling waves (Fig. 2 and Fig. S1). However,
as the microcavity starts rotating, the intrinsic chirality
of the resonances is removed, and every pair has one mode
CW dominated and the other CCW dominated.

The direction of rotation determines which one of the
quasi-degenerate pair, the higher or lower frequency mode,
will flip the propagation direction and exhibit a dramatic
change in the output direction. For example, the two
modes in Fig. 2 are both dominated by CW traveling
waves at rest; if the rotation is in the CCW (CW) direc-
tion, the lower (higher) frequency mode will transform
to CCW, and its frequency will decrease (increase) fur-
ther with rotation. Hence, by measuring the emission
frequency in the main output direction of the CCW or
CW wave, we can identify the direction of rotation.

In reality both of the quasi-degenerate modes are often
excited simultaneously, and their relative phases depend
on the excitation condition, which varies from one ex-
perimental setting to another. The interference of their
output fields determine the emission pattern, which will
be modified by rotation. To calculate quantitatively the
change of emission pattern by rotation, we simulate a
generic case [24]. Seed pulses are launched from ten ran-
domly chosen locations inside the cavity to excite the
quasi-degenerate modes. The photodetectors are assumed
to be stationary in the rotating frame and placed at a dis-
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FIG. 3: (Color online) Emission from the rotating asymmetric
limaçon cavity with the same parameters as the stationary one
in Fig. 2. (a,b) Spatial distributions of field intensities for a
pair of degenerate modes, which correspond to the stationary
modes in Fig. 2, at the normalized rotation frequency ΩR/c =
10−3. The intensities outside the cavity are enhanced to
illustrate the main output directions of the two modes are
different, even though they have the same output directions
without rotation [Fig. 2(a)]. (c) Spatial distribution of field
intensity for one of the quasi-degenerate modes in the non-
rotating cavity. It is dominated by CW wave. When the
cavity rotates in the CCW direction, this mode switches from
CW to CCW wave, and the main output direction is changed
dramatically. (d) Angular distribution of far field intensity for
the pair of modes shown in (a,b) in the rotating cavity.

tance of 3R from the cavity center. After the seed pulses
pass by, the photodetectors are turned on to measure
the emission intensity. Figure 4(a) plots the temporally-
integrated intensity Ie as a function of the emission angle
θ for the quasi-degenerate pair of modes in Fig. 2. The
irregular oscillations of Ie with θ results from the beating
of the two excited modes, which depend on their initial
phase difference.

The excitation condition is kept the same when the
rotation speed Ω increases. With increasing Ω, some
peaks of Ie(θ) increase while others decrease [Fig. 4(a)],
as the co-propagating wave resonances evolve to counter-
propagating ones. The main emission peak at θ ' 0.7
is from the CW wave, and its intensity decreases as one
of the modes is converted to CCW wave by rotation.
Meanwhile, the secondary peaks at θ ' 2.8 increases with
Ω, since they are from the CCW wave. In Fig. 4(b), the
relative changes in the main peak intensity and its ratio
to the secondary peak intensity are plotted versus the
normalized rotation speed ΩR/c (c is the speed of light
in vacuum). The latter is about two times larger than
the former.

To compare with the Sagnac effect, we calculate the
frequency splitting ∆ω of these two modes in a circular
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cavity with the same area and refractive index as the
asymmetric limaçon. The normalized frequency splitting
∆ω/ω0, where ω0 is the resonant frequency in the non-
rotating cavity, gives the relative change of the resonant
frequency by rotation. A linear fit of the data in the
log-log plot of Fig. 4(b) finds the slopes, which reflect the
sensitivity to rotation. The slope for the relative change
in the main emission peak intensity of the asymmetric
limaçon cavity is about three orders of magnitude larger
than the slope of the relative frequency shift in the circular
cavity.
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FIG. 4: (Color online) Rotation-induced change in emission
pattern of the same cavity as the one in Fig. 3, when both
quasi-degenerate modes are excited simultaneously. (a) Angu-
lar distribution of the emission intensity Ie at a distance of
r = 3R from the cavity center at three rotation speeds. To
show the change in the emission profile, Ie(θ) is normalized

(
∫ 2π

0
Ie(θ)dθ = 1). (b) Relative changes in the main emission

peak intensity (at θ = 0.73) (solid squares and solid line)
and in the ratio of main peak intensity over the secondary
peak intensity (at θ = 2.79) (crosses and dashed line) vs. the
normalized rotation frequency ΩR/c. Both peak intensities
are integrated over a range of emission angle marked by the
double-arrowed segments in (a). For comparison, relative
changes of resonant frequencies, ∆ω/ω0, are plotted for cir-
cular cavities with the same area and refractive index (open
circles and dotted line). The symbols represent the numerical
data, and the straight lines are linear fit of the data in the
log-log plot, which gives the slope. The values of the slope
are (from top to bottom) 2.4× 103, 1.2× 103 , and 5.7× 10−1

respectively. The rotation-induced changes of output intensity
are much larger than that of the resonance frequency.

To enhance the emission sensitivity to rotation, we tune
the degree of spatial chirality by varying δ of the limaçon
cavity. For δ = mπ (m is an integer), the cavity has
the chiral symmetry [r(−θ) = r(θ)]; as δ deviates from
mπ, the chiral symmetry is broken. We compute the
spatial chirality α of the quasi-degenerate modes, shown
in Fig. 2, in the non-rotating cavity with varying δ [24].
As δ increases from 0 to π, α first grows and reaches

the maximum at δ ' 1.94, then drops to zero at δ = π
[22]. We simulate the rotating cavities with different δ,
and find that the relative change of the main emission
peak intensity increases monotonically with α at a fixed
rotation speed [Fig. 5(a)].

To interpret this result, we compare the far-field pat-
terns for CW and CCW waves in the non-rotating cavities
with different δ. The difference between CW and CCW
emission patterns is quantified by β =

∫ 2π

0
|ICW (θ) −

ICCW (θ)|dθ, which is plotted as a function of α in
Fig. 5(a). Both ICW (θ) and ICCW (θ) are normalized

(
∫ 2π

0
ICW,CCW (θ)dθ = 1). The monotonic increase of β

with α indicates that the emission patterns for CW and
CCW waves become more distinct at higher chirality,
consequently the mode emission pattern changes more
significantly by rotation. The maximal spatial chirality
provides the highest sensitivity of microcavity output to
rotation.
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FIG. 5: (Color online) Output sensitivity to rotation for the
asymmetric limaçon cavity with varying degree of spatial
chirality. The cavity parameters are the same as those in
Fig. 2 except the value of δ. (a) Relative change of the
emission intensity in the main output direction (solid squares
and dashed line) as a function of spatial chirality α for the
quasi-degenerate modes in Fig. 2. The rotation frequency
is fixed at ΩR/c ' 1.5 × 10−5. The difference between the
emission patterns for CW and CCW waves in the non-rotating
cavity is quantified by β (solid circles and solid line), which
is also plotted against α. With increasing spatial chirality α,
CW and CCW outputs become more distinct, enhancing the
emission sensitivity to rotation. (b,c) Far-field patterns for
CW wave (red solid line) and CCW wave (blue dashed line)
in two cavities with δ = 0 (b), and 2.75 (c). The dotted line
marks the cavity boundary. At δ = 0, both CW and CCW
waves emit predominantly in the direction close to θ = π/2
(b), and the slight difference of their emission directions is a
result of wave effects in the wavelength-scale cavity [33]. As
δ increases from 0 to π, the main emission direction of the
CW wave moves towards θ = 0, and the CCW wave towards
θ = π; meanwhile, the secondary emission peak, which is in
the opposite direction of the main peak, grows monotonically.
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Due to our limited computing power, the simulated
microcavities have the size R comparable to the vacuum
wavelength λ. With an increase of R, the emission sen-
sitivity to rotation is expected to increase, because the
spatial chirality increases with cavity size [22], along with
an increase of the Q factor and a decrease of the intrinsic
frequency splitting ∆ω0. The minimum rotation speed
Ωc to produce a measurable change of the emission profile
is proportional to the size of the dead zone ∆ω0 [24]. As
observed in previous studies [34, 35], our numerical simu-
lation of non-rotating cavities reveals that ∆ω0 reduces
exponentially as kR increases. This leads to an exponen-
tial decrease of Ωc with R [24]. Thus we can estimate Ωc
as a function of R from the numerical data of very small
cavities [24]. For an asymmetric limaçon cavity with R
= 25 µm, a rotation speed as low as 1 RPM can cause
a noticeable (∼ 1%) change in the main emission peak
intensity.
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