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Delocalization error is one of the most fundamental and dominant errors which plague presently
used density functional approximations. It is responsible for a large class of problems in the density
functional theory calculations. For an effective and universal alleviation of the delocalization error,
we develop a local scaling correction scheme by imposing the Perdew–Parr–Levy–Balduz linearity
condition to local regions of a system. Our novel scheme is applicable to various mainstream
density functional approximations. It substantially reduces the delocalization error, as exemplified
by the significantly improved description of dissociating molecules, transition-state species, and
charge-transfer systems. The usefulness of our novel scheme affirms that the explicit treatment
of fractional electron distributions is essentially important for reducing the intrinsic delocalization
error associated with approximate density functionals.

PACS numbers: 31.15.E-, 71.10.-w, 71.15.Mb

Despite the enormous success of density-functional the-
ory (DFT), the mainstream density functional approxi-
mations (DFAs) often lead to various failures. Delocal-
ization error [1–3] is one of the most fundamental and
dominant errors which plague the DFAs. Consequently,
the local density approximation (LDA), the generalized
gradient approximations (GGAs), and the hybrid func-
tionals such as B3LYP [4, 5] predict too high binding
energies, too low reaction barriers, and too high electric
polarizabilities for stretched molecules [2, 3, 6]. Other re-
lated problems include the underestimation of band gaps
and the incorrect alignment of chemical potentials [7].

Delocalization error originates from the violation of
the Perdew–Parr–Levy–Balduz (PPLB) condition [8–11],
that the system energy as a function of electron number
E(N) should be a straight line interpolating between in-
tegers. DFAs suffering from the delocalization error yield
convex E(N) curves [1, 7, 10, 12, 14]. Inclusion of long-
range Hartree–Fock (HF) exchange often makes E(N)
curves straighter [15–20], and hence the range-separated
DFAs have less severe delocalization error [18, 19, 21–27].
However, range separation schemes do not guarantee a
complete cancellation of delocalization error. Delocaliza-
tion error has also been related to electron self-interaction
[6, 12, 13, 16, 28]. DFAs attempting at reducing the
self-interaction error have been proposed [29–41], some
of which however severely deteriorate the thermochem-
istry [3, 34, 40, 41].

Universal alleviation of the delocalization error re-
quires an explicit treatment of the fractional electron,
which is missing in almost all the mainstream DFAs. Re-

cently, several schemes have been proposed to deal with
fractional electron [42–44]. Zheng et al. have developed
a nonempirical scaling correction (SC) scheme to retrieve
the PPLB condition for systems with a fractional N [45].
For instance, the SC to the LDA energy functional is

∆ESC−LDA =
1

2

∫∫

dr dr′
[ρ(r)− g(r)] |φf (r

′)|2

|r− r′|

−
1

3
Cx

∫

dr [ρ(r)− g(r)] |φf (r)|
2

3 . (1)

Here, Cx = 3
4 (

6
π )

1

3 , g(r) =
∫

dr′ρs(r, r
′)ρs(r

′, r) with
ρs(r, r

′) being the Kohn–Sham reduced density matrix,
and ρ(r) = ρs(r, r) is the electron density. The key quan-
tity is ρ(r)−g(r) = (n−n2)|φf (r)|

2, where n is the num-
ber of fractional electron in the total system, and φf (r) is
the fractionally occupied orbital. The two terms on the
right-hand side of Eq. (1) linearize the Hartree energy
and the exchange energy at n ∈ [0, 1], respectively. The
inclusion of ∆ESC−LDA significantly improves the LDA
predicted derivative band gaps for finite systems [45].

Despite the progress, the SC scheme has an obvious
limitation – it fails to capture the fractional electron dis-
tributions in integer-N systems. Consequently, it gives
zero correction to the electron density or the energy of
any real physical system. For instance, It is well-known
that LDA and GGAs greatly underestimate the total en-
ergy of a dissociated H+

2 with half an electron on each
proton, because of the severe delocalization error [2]. The
SC of Eq. (1) gives ∆ESC−LDA = 0 since the whole H+

2

molecule has one integer electron.
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To overcome such a limitation, in this Letter we pro-
pose a local scaling correction (LSC) scheme. The basic
idea is to impose the PPLB condition to local pieces of
a system. For a dissociated H+

2 , if we could impose the
PPLB condition locally to the half electron on each pro-
ton and sum up the corrections, we would correct the
total energy of the dissociated H+

2 .

One of the main challenges of LSC is how to extract
the local distribution of half electron from ρs(r, r

′) of a
stretched H+

2 . In an atomic basis representation, ρ(r) =
χT (r)Pχ(r) and g(r) = χT (r)PSPχ(r), where χ(r) is
the vector of basis functions {χi(r)}, and P is the Kohn–
Sham reduced density matrix. Define P̃ = S1/2PS1/2,

where S =
[

SA 0

0 SB

]

is the basis overlap matrix, with A

and B denoting the two protons (the off-diagonal matrix
blocks are 0 in the dissociation limit). For integer-N
systems, the eigenvalues of P̃ are either 1 or 0, and thus
(P̃ )2 = P̃ and ρ(r)− g(r) = 0.

To capture the half electron, we replace S by an r-
dependent screened overlap matrix Sv(r) with

Sv,ij(r) =

∫

dr′ χi(r
′) v(|r− r

′|)χj(r
′), (2)

and P̃ by P̃v(r) = S
1/2
v PS

1/2
v . In Eq. (2), v(r) = 1 at

r < R0 (R0 is a certain length), while it decays quickly to
0 at r > R0. At the position of proton A (rA) or B (rB),

we have Sv(rA) =
[

SA 0

0 0

]

or Sv(rB) =
[

0 0

0 SB

]

. The

eigenvalues of P̃v(rA) and P̃v(rB) are {
1
2 , 0, · · · , 0}. Here,

the fractional eigenvalue 1
2 conveys the key information

that each proton carries half an electron.

For general many-electron systems, the same Sv(r) and
P̃v(r) can be defined. The eigenvalues of P̃v(r) are 1, 0,
or a fractional number nf (r). We can thus extract nf(r)

by evaluating P̃v − (P̃v)
m. All the integer eigenvalues

cancel exactly, while nf (r) − nf (r)
m ≈ nf (r) provided

that a large enough m is chosen (we take m = 10 for
nf (r) ∼ 0.5).

Besides the local fractional occupation number nf(r),
its density distribution l(r) is also needed. Define

gvm(r) =

∫

dr1dr2 · · · drm ρs(r, r1) v(|r− r1|) ρs(r1, r2)

× v(|r − r2|) · · · v(|r − rm|) ρs(rm, r). (3)

l(r) = ρ(r)− lim
m→∞

gvm−1(r)

= lim
m→∞

χT (r)S−1/2
v [P̃v − (P̃v)

m]S−1/2
v χ(r). (4)

We may formally write l(r) ≡ nf (r) d(r), with d(r) being
the orbital density of the local fractional electron, as it
plays an analogous role to |φf (r)|

2 in Eq. (1).

Consider also Q̃v(r) = I − P̃v(r) with I being the
identity matrix. The eigenvalues of Q̃v are complements
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FIG. 1. (a) The local fractional occupation number nf (r) and
(b) the local fractional orbital density d(r) of a dissociating
H+

2 along the bonding axis at various internuclear distances
R. A proton locates at x = 0, while the other proton resides
at x = R.

to those of P̃v. Define similarly

l̃(r) = lim
m→∞

χT (r)S−1/2
v [Q̃v − (Q̃v)

m]S−1/2
v χ(r). (5)

The formal analogy between Eqs. (4) and (5) suggests
that l̃(r) = [1− nf (r)] d(r), and hence d(r) = l(r) + l̃(r).
Figure 1 depicts nf (r) and d(r) versus the internuclear

distance R of an H+
2 molecule. At a small R (say, R =

1 Å), d(r) is rather small and nf (r) = l(r)
d(r) ≈ 0.9 at r

near the nuclei. This indicates that there is rather small
amount of local fractional electron in a compact H+

2 , and
hence the scaling correction to the total energy should
be small. In contrast, at R > 5 Å, d(r) exhibits two
separated peaks with each at a proton site; and nf(r) ≈
0.5 at the nuclear positions. The functions nf (r) and d(r)
thus reveal that each proton carries half an electron.
The remaining challenge is to construct a correction

energy functional using l(r) and d(r) as basic variables.
By making an analogy to Eq. (1), we design the following
form of LSC (spin index is suppressed, and r = |r− r

′|):

∆ELSC−LDA=
1

2

∫∫

drdr′
l(r)u(µ0r) [d(r

′)− l(r′)]

r

−
1

2

∫∫

drdr′
l(r) [1− u(µ0r)] l(r

′)

r

− Cx

∫

dr
{

l(r)[d(r)]
1

3 − [l(r)]
4

3

}

. (6)

Here, the first and third terms on the right-hand side lin-
earize the classical Coulomb and exchange energy den-
sities at every r, respectively. To achieve a truly local
correction, a short-range kernel u(µ0r) is introduced in
the first term, with µ0 being a range parameter. It lim-
its the range of integration, so that only when r and r

′

are near the same nucleus, does the integrand contribute
nontrivially to the energy. In practice, we adopt a Fermi-
type form for u(µ0r) [46], which gives a smooth spatial
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FIG. 2. Dissociation energy curves of (a) H+
2 and (b) He+2 .

The total energy of isolated H and H+ (He and He+) is set to
zero energy. Sv(r) and ∆ELSC−LDA are calculated by Eqs. (2)
and (6), respectively. For numerical convenience, both v(r)
and u(µ0r) are expanded by polynomial Gaussians [46], and
their cutoff lengths are chosen to be around 1 Å. For He+2 the
coupled-cluster method with single, double, and non-iterative
triple excitation (CCSD(T)) [47–49] is taken as reference.

cutoff at a certain length. For simplicity, we set the cutoff
length of u(µ0r) to be the same as v(r). The second term
is to eliminate the unwanted long-range Coulomb repul-
sion between the two half-electrons at a large R, which
is essential to attain the correct asymptotic behavior for
the total energy as R → ∞.

The LSC to DFAs other than LDA can be designed
similarly. In this Letter we simply use ∆ELSC−GGA ≈
∆ELSC−LDA for GGAs; and ∆ELSC−B3LYP ≈ (1 −
a0)∆ELSC−LDA for the hybrid functional B3LYP, with
a0 = 0.2 being the weight of HF exchange.

Figure 2(a) depicts the energy of H+
2 versus R cal-

culated by various DFAs. Compared with the exact HF
curve, LDA, BLYP [5, 50], and B3LYP drastically under-
estimate the energies at large R. DFAs containing long-
range HF exchange such as LC-BLYP [18], LC-ωPBE
[51], ωB97 [27], and CAM-B3LYP [23] give improved en-
ergies, but the energies still deviate significantly from the
exact curve at R > 3 Å. In contrast, LSC-DFAs yield en-
ergies very close to the exact curve at large R, which
clearly affirms the validity of the LSC. Substantial im-
provement of energy by the LSC is also seen in Fig. 2(b),
where the dissociation of a He+2 is examined.

The LSC gives almost no energy correction at small R,
such as at the equilibrium bond length of H+

2 (R ≈ 1 Å).
This is because nf (r) ≈ 1 (see Fig. 1) and l(r) ≈ d(r).
Note that nf (r) is slightly off the integer value 1 at r near
the nuclei. This is because Sv(r) differs slightly from S

with a small cutoff length (R0 = 1 Å) chosen for v(r).

We now consider general polyatomic systems. To have
a universally applicable LSC, Eq. (6) needs to be modi-
fied. This is because: (i) the long-range Coulomb term
(the second term) will diverge in extensive systems such
as in solids; (ii) the screening distance R0 for v(r) should

Test set
mean absolute error (kcal/mol)

BLYP LSC-BLYP B3LYP LSC-B3LYP

HTBH38/08 7.83 4.85 4.43 2.71

NHTBH38/08 8.79 4.38 4.44 2.93

G2-97 7.28 7.41 3.40 4.51

TABLE I. Performance of LSC-BLYP and LSC-B3LYP
on thermochemical properties and reaction barriers. The
HTBH38/08 and NHTBH38/08 test sets contain 38 hydrogen
and non-hydrogen transfer reaction barrier heights [55, 56],
respectively. See the Supplemental Material [46] for more de-
tails.

be atom-specific; and (iii) the computation of Sv(r) and
∆ELSC−DFA is rather expensive with Eqs. (2) and (6).

To resolve the above issues, we make the following
changes to Eq. (6): (i) We replace the long-range ker-
nel 1− u(µ0r) in the second term by a mid-range kernel
w(r) = u(µ1r) − u(µ2r), to avoid possible divergence of
energy. (ii) We adopt the approximation

Sv(r) ≈ S1/2 V (r)S1/2, (7)

with Vij(r) = δij
(

1 + e β[|r−ri|−R0(r)]
)−1

. Here, ri is the
center of ith atomic basis, β = 4.0 bohr−1; and R0(r) =
R0i at r close to ri, with R0i being an atom-specific radius
[46]. (iii) We expand the kernels u(µ0r) and w(r) by error
functions and polynomial Gaussians, and use a resolution
of identity technique [52, 53] to simplify the computation
of the double integrals. All the parameters involved in the
LSC, including the range parameters {µ0, µ1, µ2} and the
atom-specific screening radii {R0i}, are determined by
minimizing the mean absolute error of the G2-1 set [54]
of thermochemical data [46] non-self-consistently using
orbitals of the parent DFAs. These parameters are then
fixed for all other systems.

For a many-electron system with a compact geometry,
the screening of core electrons by Sv(r) may lead to arti-
ficial local fractional electron, making nf (r) < 1 near the
nuclei. This inevitably causes some minor over-correction
to the energy. As shown in Table I, compared with the
parent DFAs, the LSC-DFAs largely preserve yet slightly
compromise (due to the minor over-correction) the accu-
racy of thermochemical properties for molecules at equi-
librium structures. In contrast, transition-state species
involve partially formed or dissociated chemical bonds,
and the existing local fractional electron distributions are
well captured by the LSC. As seen from Table I, the LSC
indeed significantly improves the prediction of hydrogen
and non-hydrogen transfer reaction barrier heights.

The LSC is within the generalized Kohn–Sham scheme
[57], since its form depends explicitly on ρs(r, r

′). The
corresponding correction to the Kohn–ShamHamiltonian

matrix ∆HLSC
ij = ∂∆ELSC

∂Pij
can be evaluated readily [46].

Therefore, all the LSC-DFA results reported below were
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FIG. 3. Dissociation energy curves of a LiF molecule. The
sum of energies of a neutral Li atom and a neutral F atom is
set to zero energy. The inset shows the Mulliken charge on Li
as a function of internuclear distance R.

obtained with self-consistent-field calculations.

With the corrected Kohn–Sham Hamiltonian, the LSC
is capable of correcting the wrong electron density re-
sulted from the delocalization error. This is exempli-
fied by the dissociation of a LiF molecule as shown in
Fig. 3. The CCSD(T) method predicts that the Mul-
liken charge q on Li undergoes an abrupt jump from +1
to 0 at R = 7.4 Å, where the two energy surfaces corre-
sponding to the ionic and neutral dissociation products
intersect with each other. It is known that BLYP and
B3LYP yield rather smooth q(Li) versus R [41, 58], be-
cause the delocalization error leads to the wrong electron
density with fractional electron localized on each nucleus.
With the LSC, the sharp transition in q(Li) is recovered,
and the energy at large R is also substantially corrected.
This example clearly demonstrates the advantage of LSC
in treating charge-transfer systems.

The validity of the LSC is independent of system size.
This is because by construction the overall correction is
the sum of all local contributions (integration over r).
Therefore, LSC-DFAs are potentially useful for the stud-
ies of large complex systems. For instance, in a DFT-
based molecular dynamics study of a water-solvated OH
radical (OH·), the OH· is predicted to carry a negative
charge of -0.2 by BLYP [59, 60]. This is known to be an
artifact caused by the delocalization error. We performed
calculations on the clusters OH·(H2O)n (n = 1, · · · , 15)
with various DFAs. As shown in Fig. 4, while the BLYP
predicts that q(OH·) approaches to -0.2 as n increases,
some hybrid or range-separated DFAs reduce q(OH·) to
about -0.1. In contrast, with the LSC-BLYP the unphys-
ical negative charge on OH· becomes negligibly small.
Moreover, GGAs incorrectly predict a hemi-bonding ge-
ometry to be the energy minimum of OH·H2O [59, 61],
while LSC-GGAs correctly predict a hydrogen-bonding
structure to be energetically more favorable [62].
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FIG. 4. Mulliken charge on OH· (sum of atomic Mulliken
charges on O and H) versus n for the clusters OH · (H2O)n.

To conclude, the proposed LSC scheme offers an ef-
fective and general approach for reducing the delocaliza-
tion error of mainstream DFAs. It significantly improves
the characterization of dissociating molecules, transition-
state species, and charge-transfer systems, within the
framework of DFT. For systems with compact geome-
tries, the present form of LSC may lead to minor over-
correction.

It is known that range-separated DFAs yield accurate
reaction barriers [3, 23, 27, 51, 63], and some long-range
corrected DFAs such as LC-BLYP and ωB97 can properly
dissociate a LiF molecule [46]. This is because the local-
ization error associated with the long-range HF exchange
cancels partly the delocalization error of the LDA/GGA
exchange. However, a complete cancellation of errors is
generally not guaranteed; see Figs. 2 and 4. Moreover,
the optimal range-separation form can be rather system-
dependent [19, 20, 24, 64]. In contrast, the LSC is based
on a conceptually different strategy – it aims at a uni-
versal elimination of delocalization error by imposing the
PPLB condition locally at every r-point.

The LSC proposed in this Letter is much beyond the
previously developed global SC scheme [45], as it is capa-
ble of correcting both the energy and the electron density
of realistic physical systems. Therefore, it presents an im-
portant step forward along the direction of understanding
and correcting the intrinsic errors of DFAs [2, 3]. In addi-
tion, the present form of LSC is expected to give nonzero
corrections to periodic systems, and thus it would be in-
teresting to study how the LSC affects the properties of
solids and interfacial systems.
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