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4Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, F-91406 Orsay, France

5Department of Physics, University of Arizona, Tucson, AZ 85721, USA
(Dated: April 23, 2014)

We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can
turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of
nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained
in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the
EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte
Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron and
triton LQCD energies at mπ ≈ 800 MeV, we reproduce the corresponding alpha-particle binding
and predict the binding energies of mass-5 and 6 ground states.

PACS numbers: 21.45-v,21.30-x,12.38.Gc

Introduction – Understanding the low-energy dynam-
ics of quantum chromodynamics (QCD), which under-
lies the structure of nuclei, is a longstanding challenge
posed by its non-perturbative nature. After many years
of development, lattice QCD (LQCD) simulations are ful-
filling their promise of calculating static and dynamical
quantities with controlled approximations. Progress has
reached the point where meson and single-baryon prop-
erties can be predicted quite accurately, see for example
Ref. [1]. Following the pioneering studies in quenched
[2] and fully-dynamical [3] LQCD, a substantial effort
is now in progress to study light nuclei [4–7]. Multin-
ucleon systems are significantly more difficult to calcu-
late than single-baryon states, as they are more complex,
demand larger lattice volumes, and better accuracy to
account for the fine-tuning of the nuclear force. At heav-
ier light-quark masses, the formation of quark-antiquark
pairs is suppressed, the computational resources required
to generate LQCD configurations are reduced, and the
signal-to-noise ratio in multinucleon correlation function
improves [7]. Therefore, present multinucleon LQCD
simulations are performed at heavy up and down quark
masses, which result in unphysical values for hadronic
quantities. Once lattice artifacts are accounted for using
large enough volumes and extrapolating to the contin-
uum, LQCD results depend on a single parameter, the
pion mass mπ. However, sufficiently large volumes are
harder to achieve as the number of nucleons increases
due to the the saturation of nuclear forces.

A hadronic effective field theory (EFT) that incorpo-
rates chiral symmetry (chiral EFT) provides a tool to ex-
trapolate LQCD results to a smaller, more realistic pion
mass [3, 8]. Here we show how EFTs, combined with ab

initio methods for the solution of the Schrödinger equa-
tion, provide a way to extend LQCD results also to the
larger distances involved in nuclei with several nucleons.

Of course, solving the nuclear many-body problem is not
a small challenge, yet it is considerably simpler than solv-
ing QCD on the lattice.

We devise an EFT for existing lattice nuclei, that is,
nuclei composed of neutrons and protons living in a world
where mπ is much larger than the physical pion mass.
Pion effects can be considered short-ranged, and the ap-
propriate theory is pionless EFT (π/EFT), an EFT based
on the most general dynamics among nucleons which is
consistent with the symmetries of QCD. (For a review,
see e.g. Ref. [9]). We solve this EFT in leading or-
der (LO) using the effective-interaction hyperspherical
harmonics (EIHH) method [10] for systems with A ≤ 6
nucleons, and the auxiliary-field diffusion Monte Carlo
(AFDMC) method [11, 12] for A ≥ 4. Binding energies
of nuclei with A ≤ 3 are used as input. The energy of the
A = 4 ground state provides a consistency check between
both ab initio methods, and between them and LQCD.
Binding energies for A ≥ 5 are predictions that extend
LQCD into new territory. In order to evaluate the feasi-
bility of our approach, we present here the first analysis
of the problem using recent multinucleon LQCD results
at mπ = 805 MeV from the NPLQCD collaboration [6].
Table I summarizes nucleon and light nuclear data in na-
ture and in the LQCD world, including our results.

The modern approach to nuclear physics deploys ab

initio methods such as EIHH and ADFMC in the solu-
tion of chiral EFT with coupling constants tuned to ex-
perimental few-body data. Since the latter are replaced
here by LQCD data, our approach illustrates how even-
tually one will be able to derive the structure of real
nuclei directly from QCD. Our method can be extended
straightforwardly to hypernuclei.

Effective Field Theory – Identification of the relevant
energy scales and the selection of the appropriate degrees
of freedom is essential for a successful application of EFT
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TABLE I. Available experimental and LQCD data at various
values of the pion mass [MeV], and our results: the neutron
and proton masses and binding energies of the lightest nuclei
[MeV]. Fitted values are marked with *. Error estimates are
discussed in the text.

mπ 140 510 805 805

Nucleus [Nature] [5] [6] [This work]

n 939.6 1320.0 1634.0 1634.0

p 938.3 1320.0 1634.0 1634.0

nn - 7.4 ± 1.4 15.9 ± 3.8 15.9 ± 3.8 *

D 2.224 11.5 ± 1.3 19.5 ± 4.8 19.5 ± 4.8 *
3n - -
3H 8.482 20.3 ± 4.5 53.9 ± 10.7 53.9 ± 10.7 *
3He 7.718 20.3 ± 4.5 53.9 ± 10.7 53.9 ± 10.7
4He 28.30 43.0 ± 14.4 107.0 ± 24.2 89 ± 36
5He 27.50 98 ± 39
5Li 26.61 98 ± 39
6Li 32.00 122 ± 50

TABLE II. Variation of the nuclear energy scales with the
pion mass.

Scale mπ ∼ 140 MeV mπ ∼ 500 MeV mπ ∼ 800 MeV

MQCD 1000 MeV 1300 MeV 1600 MeV

M∆ 300 MeV 300 MeV 180 MeV

Mπ 140 MeV 500 MeV 800 MeV

Mope 20 MeV 200 MeV 400 MeV

Mnuc 10 MeV 15 MeV 25 MeV

to a physical problem. In Table II we present the relevant
energy scales for natural nuclear physics and for lattice
nuclei, as inferred from Table I.

In nature, nuclear physics comprises several scales.
The higher is the QCD scale MQCD ∼ mN ∼ 1 GeV
that characterizes the nucleon mass mN , most other
hadron masses, and the chiral-symmetry-breaking scale.
The second and third scales are given by the energies of
the lightest nucleon excitation and meson, respectively,
M∆ ∼ m∆ −mN ∼ 300 MeV associated with the Delta-
nucleon mass difference and Mπ ∼ mπ ∼ 140 MeV. Both
these scales are numerically not very different from the
pion decay constant and the Fermi momentum in heavy
nuclei. Another energy scale, which we call the one-pion-
exchange scale, emerges when the inverse pion Comp-
ton wavelength is combined with the QCD mass scale,
Mope ∼ m2

π/mN ∼ 20 MeV. This is also the characteris-
tic magnitude of the nuclear binding energy per nucleon,
Mnuc ∼ B/A.

For lattice nuclei these scales can be different. We ob-
serve that the approximate degeneracy betweenMope and
Mnuc, so important in nature, is removed and a clear sep-

aration develops betweenMnuc and the other scales. Bar-
ring a dramatic, unforeseen relative decrease in the mass
of another nucleon excitation or meson, nucleons are ex-
pected to be the only relevant degrees of freedom for low-
energy lattice nuclei. An EFT involving the most general
dynamics of only the non-relativistic four-component nu-
cleon field (two spin and two isospin states), without any
mesons, is the appropriate theory for these systems. For
a process with external momenta Q ∼

√
mNMnuc it pro-

duces the same S matrix as QCD, but in an expansion
in Q/M , where M is the typical scale of higher-energy
effects. The resulting theory coincides with π/EFT for
natural nucleons [9], except for different values of pa-
rameters and scales. While in nature

√
mNMnuc ∼ 100

MeV and M ∼ Mπ, for mπ ∼ 800 MeV the numbers
in Table II suggest instead

√
mNMnuc ∼ 200 MeV and

M ∼
√

MQCDM∆ ≃ 500 MeV (cf. Ref. [13]).

The Hamiltonian – The EFT Lagrangian contains all
possible terms compatible with QCD symmetries and or-
dered by the number of derivatives and nucleon fields.
The corresponding Hamiltonian is naturally formulated
in momentum space, where the potential takes the form
of a momentum expansion that must be regulated in high
momentum. Dependence only on transferred momenta
leads to local interactions, while more general momen-
tum dependence yields non-local interactions as well.

Due to the Pauli principle we need consider only an-
tisymmetric multinucleon states. Restricting the La-
grangian to this subspace we are free to choose a sub-
set of the terms in the EFT Lagrangian without loss of
generality. As in Ref. [14], here we aim at formulat-
ing a local EFT nuclear potential that will allow us to
study the many-body problem utilizing techniques, such
as AFDMC [11, 12], that are restricted to local interac-
tions. In order not to introduce non-local terms in the
regularization, we assume a regulator function of Gaus-
sian form, fΛ(q) = exp(−q

2/Λ2) in terms of the momen-
tum transfer q and a regulator parameter (or cutoff) Λ.

For this regulator the coordinate-space Hamiltonian
takes the form

H = −
∑

i

∇2
i

2mN
+
∑

i<j

(C1 + C2 σi · σj) e
−Λ2r2ij/4

+
∑

i<j<k

∑

cyc

D1 (τ i · τ j) e
−Λ2(r2ik+r2jk)/4 + . . . , (1)

where
∑

cyc stands for the cyclic permutation of a particle
triplet (ijk), and “. . . ” for terms containing more deriva-
tives and/or more-body forces. The expansion coeffi-
cients C1,2(mπ,Λ), D1(mπ,Λ), . . ., commonly called low-
energy constants (LECs), are unknown parameters that
encompass physics at the scale M and above, and thus
change with mπ. They depend on the arbitrary cutoff Λ
in such a way that low-energy observables are (nearly)
cutoff-independent, and they should be fitted through
comparison between the EFT and the available data.
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Näıve scaling arguments suggest that the LECs should
scale as 1/M1+d+ 3

2
(n−4), where d is the number of deriva-

tives and n is the number of nucleon fields [15]. However,
the existence of shallow S-wave two-body bound states
at

√
mNMnuc ≪ M requires enhancements in operators

that connect S waves. The LO two-body operators are
those without derivatives [16]. While a surprising en-
hancement in the non-derivative three-body interaction
promotes it to LO [17], the same is thought not to hap-
pen for four-body forces [18]. More-body forces require
derivatives and are expected to be further suppressed. To
match current lattice calculations we can neglect isospin
violation. For the first attempts at a description of real
light nuclei with the leading interactions, see Ref. [19].
The mπ dependence of two- and three-nucleon observ-
ables in π/EFT has been studied with input from chiral
EFT in Ref. [20]. The quark mass dependence of the
triple-α process was estimated in Ref. [21].

Some comments are in order about the EFT trunca-
tion. Expanding the regulator around q = 0, we see that
it introduces terms of O(Q/Λ)2. Moreover, the regula-
tor does not commute with the permutation operator,
which gives rise to more general momentum dependence
of the same order. These terms can be lumped with
higher-order interactions in the “. . . ” of Eq. (1) without
increasing the expected truncation error, O(Q/M), be-
cause we consider here Λ>∼M . A conservative estimate
of the π/EFT truncation error at LO is about 40%. How-
ever, we note that in application of π/EFT to the physical
4He nucleus an accuracy of 10-20% is achieved [18, 19],
even though a naive estimate suggests a 50% uncertainty.

Input data – The online publication of the NPLQCD
data for the spectrum of the A ≤ 4 nuclei last year
[6] provided the motivation for the current work. The
measured lattice binding energies of the deuteron, dineu-
tron and triton, together with that of the alpha particle,
provided us with the three data points to which we fit
our LO LECs, plus one data point to validate it. In
the meanwhile new lattice results have appeared. Un-
quenched calculations of light nuclear binding energies
at mπ = 510 MeV were reported [5], and also the two-
nucleon (NN) scattering lengths and effective ranges at
mπ = 805 MeV [7]. We assume here that the interaction
has range ∼ 1/mπ and comparable effective ranges, but
much larger scattering lengths. Since the reported effec-
tive ranges are smaller than the scattering lengths, our
expansion should converge, albeit at a slow rate. Note,
however, that the data from Ref. [7] indicates an almost
degenerate double bound state pole in the NN T ma-
trix, which is thought to be incompatible with a short-
range non-relativistic potential [22]. Worse still, Ref. [4]
finds no NN bound states in a large range of pion masses
that includes the values in Table I. Until the dust set-
tles, we concentrate on the LQCD data in Table I for
mπ = 805 MeV, as a first check of our proposed ap-
proach.

TABLE III. The LO LECs [GeV] for lattice nuclei at mπ =
805 MeV, as a function of the momentum cutoff Λ [fm−1].

Λ C1,0 C0,1 D1

2 −0.1480 −0.1382 −0.07515

4 −0.4046 −0.3885 −0.3902

6 −0.7892 −0.7668 −1.147

8 −1.302 −1.273 −2.648

Calibration and predictions – For the calibration of the
NN LECs we turn to the spin-isospin (S, T ) basis and de-
fine the channel constants CS,T ≡ C1+[2S(S+1)−3]C2.
We solve the two-body Schrödinger equation using the
Numerov method, and fit CS,T to the deuteron (S =
1, T = 0) and dineutron (S = 0, T = 1) binding en-
ergies. To calibrate the LEC D1 using the 3H binding
energy B3, we solve the three-body Schrödinger equa-
tion with the EIHH method, where we expand the wave-
function into a set of antisymmetrized hyperspherical-
harmonics spin-isospin states. Convergence is controlled
by the hyper-angular quantum number Kmax, results be-
ing obtained by extrapolation to the limit Kmax → ∞
[10]. The corresponding error in our results is estimated
to be smaller (for the lighter systems, much smaller) than
the EFT truncation error.

The LECs fitted to the central values of the lattice
results are presented in Table III. The cutoff dependence
of the NN LECs CS,T is qualitatively similar to other
regulators [16]. We see no limit-cycle behavior [17] in D1,
possibly because our cutoff values are not large enough
to probe the second branch of the periodic function.

A simple check of π/EFT at LO, which is equivalent
to the large-scattering-length approximation to the two-
body problem, is that for large cutoffs the S = 1, T = 0
scattering length is related to deuteron binding energy
B31 by a31 ≈ 1/

√
mNB31 [16]. This relation suggests

that a31 should approach 1.12 fm for the lattice deuteron.
For our Gaussian cutoff we find a31 = (1.2 ± 0.5) fm,
where we use the wide range of cutoff variation 2 −
14 fm−1 to estimate the EFT error. With a sharper cutoff
function fΛ(q) → exp(−q

4/Λ4) there is quicker conver-
gence to the expected number, a31 = (1.1±0.1) fm in the
same cutoff range.

With LECs fixed, we now have a complete LO po-
tential that can be used to predict other properties of
lattice nuclei. As a first step in this direction we shall
estimate the binding energies BA for A = 4, 5, 6. To
solve the Schrödinger equation for these systems we use,
in addition to EIHH, also the AFDMC method. In the
latter technique [11, 12], the ground-state energies are
projected from an arbitrary initial state by means of
a stochastic imaginary-time propagation. The numer-
ical complexity related to the presence of operatorial



4

4
H

e
-
B

in
d
in

g
en

er
gy

Λ [fm−1]

AFDMC
EIHH

40.0

60.0

80.0

100.0

120.0

140.0

1 2 3 4 5 6 7 8

FIG. 1. (Color online) 4He binding energy B4 [MeV] as func-
tion of the momentum cutoff Λ [fm−1]. The (magenta) hori-
zontal line and the (pink) band give the LQCD central value
and error. The (black and blue) solid lines are (respectively
the EIHH and AFMDC) LO EFT results.

terms in the interaction is reduced by using the Hubbard-
Stratonovich transformation, at the price of introducing
auxiliary fields as additional degrees of freedom.

In properly renormalized EFT, observables should be
asymptotically invariant to the value of Λ. In practice,
this goal is hard to achieve because in heavier systems
our cutoff range is limited and variation of calculated
properties tends to be smaller than the expected EFT
truncation error. Therefore we aim for a more modest
goal, that observables depend only weakly on the cutoff.
In Fig. 1 we present the calculated binding energy of
4He, B4, as a function of Λ. Over a wide cutoff range
the EFT prediction reproduces the LQCD result within
the measurement error, evidence that the EFT in LO
captures the essence of the strong-interaction dynamics,
and that 40% is an overestimate of the EFT truncation
error. Our results are not cutoff invariant, however the
cutoff dependence is rather moderate: B4 changes by
20% when Λ grows by a factor of 4.

In Fig. 2 we present the correlation between 3He and
4He binding energies. When we allow D1 to vary at fixed
CS,T , LO EFT gives a line [18], which corresponds to the
phenomenological Tjon line [23]. One can see how the
measurement error in B3 is propagated into an error in
the predicted B4 value. Using this figure alone one would
conclude that the EFT error estimate for B4 is about ±27
MeV, very close to the measurement error. Our estimate
of a 40% error in the LO EFT is likely very conservative.
Our reproduction of the LQCD central value and error
estimate for B4 indicates consistency of the LQCD values
[6] for the A = 2, 3, 4 systems.

The power of the EFT formulated above is the relative
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FIG. 2. (Color online) Correlation between the 4He and 3He
binding energies, B4 [MeV] and B3 [MeV]. Horizontal and
vertical lines and bands represent LQCD results. The (blue)
solid line is the Tjon line in LO EFT from EIHH at Λ = 2
fm−1.

ease with which it can be extended to different few- and
many-body systems. Using Λ = 2 fm−1 we have looked
for excited states in A = 2, 3, 4 systems, but much to
our surprise found none. Similarly, we have found no ev-
idence for 3n droplets, for which our ground-state binding
energy coincides with the two-body threshold. Results
for the A = 5, 6 ground states at Λ = 2 fm−1 are shown
in Table I, with errors estimated from the EFT trunca-
tion.
For 5He we found a bound state with binding energy

B5 = 98.2 MeV, which reflects a 9 MeV binding rel-
ative to 4He at the same cutoff. However, examining
the evolution of B5 with the cutoff we found that for
Λ = 4 fm−1 the five-body ground-state energy coincides
with the four-body threshold. This suggests that the
A = 5 nuclear gap found in nature persists for larger
quark masses.
We have also calculated the 6Li ground state for

Λ = 2 fm−1, obtaining B6 ≈ 122 MeV. In this case
the error in Kmax extrapolation is about 3 MeV, which
is somewhat larger than for lighter systems but still
small compared with input and truncation errors. Thus
B6/A ≈ 20 MeV, similar to lattice 4He. We conjec-
ture that nuclear saturation survives the increase in pion
mass, but this conclusion remains to be confirmed by
larger calculations.
Conclusion – One of the main challenges of current re-

search in nuclear physics is to provide a unified look at
the nuclear regime, from QCD to heavy nuclei. Using re-
sults from recent lattice QCD simulations of few-nucleon
systems, we took important steps in this direction by
demonstrating the consistency of π/EFT and LQCD for
mπ ≈ 800 MeV. Our results suggest that some of the
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defining properties of nuclei might be relatively insensi-
tive to the value of the pion mass. More LQCD data
are needed in order to go beyond LO EFT and assess
the systematic uncertainty of the EFT approach, while
more extensive calculations with the EFT should settle
the issue of the importance of quark masses to nuclear
properties, with implications for the analysis of funda-
mental constant variability [24].
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