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The positivity of the probability measure of attractively interacting systems of 2N -component
fermions enables the derivation of an exact convexity property for the ground-state energy of such
systems. Using analogous arguments, applied to path-integral expressions for the entanglement
entropy derived recently, we prove non-perturbative analytic relations for the Rényi entropies of
those systems. These relations are valid for all sub-system sizes, particle numbers and dimensions,
and in arbitrary external trapping potentials.
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Introduction.– In recent years, research in many-body
and condensed matter physics in general has developed
a growing intersection with the areas of quantum infor-
mation and quantum computation [1]. Considerable at-
tention has been given to the notion of entanglement,
in particular to the entanglement entropies as a means
to identify and characterize quantum phase transitions
(especially topological ones) [2, 3]. The conformal field
theories governing the low-energy behavior at those crit-
ical points are also of relevance for high-energy physics,
black-hole physics and string theory [4], where some ex-
act results have been available for many years.

In spite of much progress, the calculation of the en-
tanglement properties has been a difficult challenge for
many-body theories. Indeed, even the calculation of the
asymptotic form of the entanglement entropy for large
(sub-)systems of non-interacting fermions was the sub-
ject of much discussion (see e.g. [5]); and for interacting
systems it was until recently challenging to even formu-
late a way amenable to quantum Monte Carlo calcula-
tions. However, there are currently a few alternatives
(see e.g. [6]), and in this work we will use the formalism of
Ref. [7], in which Grover proposes a way to calculate fully
interacting reduced density matrices using auxiliary-field
quantum Monte Carlo (AFQMC) (see also Ref. [8]). The
resulting path-integral expression for the entanglement
entropy will be central to our arguments.

Such AFQMC calculations, in particular those on the
lattice, rely on the positivity of the fermion determinant
as the natural probability measure arising from the field
integration of the fermion degrees of freedom. While
this property is essential from a computational stand-
point, it has also enabled the non-perturbative analytic
proof of a variety of exact inequalities among the hadron
masses arising from Quantum Chromodynamics (QCD);
the most recent contribution in this direction (as of this
writing) is due to Detmold [9], but earlier versions have
been around for many years [10] (see Ref. [11] for a review
on QCD inequalities).

In this work, we use measure-positivity arguments to

derive an exact inequality that expresses the convexity of
the entanglement entropy with respect to particle num-
ber in a system of SU(2N) fermions, i.e. a system of 2N
species of otherwise identical fermions, with attractive in-
teractions (depicted in Fig. 1). The inequality holds for
all Rényi entropies, all sub-system sizes, particle numbers
and dimensions, as well as arbitrary external trapping
potentials.

To carry out the proof, we combine a path-integral
expression for the Rényi entanglement entropy of inter-
acting Fermi systems, derived recently in Ref. [7], with
(the proof of) a theorem that establishes the spectral
convexity of SU(2N)-symmetric fermions with attractive
interactions, first proven by D. Lee in Ref. [12]. Inter-
estingly, this theorem was originally motivated by the
properties of nuclear structure [13] and the importance
of Wigner SU(4) symmetry in that context [14]. To facili-
tate contact with the original derivation, we follow closely
the main steps, and use similar notation. However, some
modification is needed due to the presence of “replicas”
of the auxiliary field, as explained below, among other
details. The main result is depicted in Fig. 3, and it in-
dicates that the entanglement entropy of Npart fermions,
for 2NK ≤ Npart ≤ 2N(K + 1), with K a positive in-
teger, is always greater or equal than the average of the
entanglement entropies of 2NK and 2N(K+1) fermions.
Here, the 2NK fermions are to be understood as K par-
ticles per component, and the 2N(K+1) fermions appear
as K + 1 particles per component. The states between
these have K + 1 particles for some species and K par-
ticles for the rest. It is well-known that other inequali-
ties exist that relate the entanglement entropy of disjoint
subregions of a system (see e.g. [15]). The inequality es-
tablished here, however, is unrelated to the property of
sub-additivity, and is therefore of a different kind, as ex-
plained below.

Derivation of the inequality.– The n-th Rényi entangle-
ment entropy Sn of a sub-system A of a given quantum
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FIG. 1: (color online) The system considered here is made out
of 2N species of otherwise identical fermions, on a space-time
lattice. All of the species live in the whole volume, but the
entanglement entropy is computed for a subregion A.

system is defined by

Sn =
1

1− n
ln tr(ρ̂nA), (1)

where ρ̂A is the reduced density matrix of sub-system A
(i.e. the degrees of freedom of the rest of the system are
traced over).

To establish our main result, we put the system on a d-
dimensional spatial lattice of side Nx and consider imple-
menting the projection AFQMC method, with some trial
state |Ψ〉, which we assume has a non-vanishing overlap
with the true ground state.

In Ref. [7], Grover derived an auxiliary-field path-
integral form for ρ̂A, from which he showed that Sn can
be accessed via AFQMC calculations. Indeed, for a sys-
tem of 2N -component fermions, Sn can be written in that
formalism as

exp
(
(1− n)Sn

)
=

∫
D{σ}P [{σ}] Q[{σ}] (2)

where

D{σ} =
n∏

k=1

Dσk
Z

, (3)

Z =

∫
Dσ

2N∏
m=1

detUm[σ], (4)

P [{σ}] =

n∏
k=1

2N∏
m=1

detUm[σk], (5)

Q[{σ}] =

2N∏
m=1

detMm[{σ}] (6)

Mm[{σ}] =

n∏
k=1

(
11−GA,m[σk]

)
×[

11 +

n∏
k=1

GA,m[σk]

11−GA,m[σk]

]
, (7)

and the path integral
∫
D{σ} is over the n “replicas”

σk of the Hubbard-Stratonovich auxiliary field. Here,
Um[σ] is a matrix which encodes the dynamics of the
m-th component in the system, namely the kinetic en-
ergy and the form of the interaction after a Hubbard-
Stratonovich transformation; it also encodes the form of
the trial state |Ψ〉 (see e.g. Ref. [16]), which we take to
be a Slater determinant. GA,m[σk] is the restricted non-
interacting single-particle Green’s function of the m-th
component in the background field σk, as explained in
Ref. [7] (see also Ref. [17]). The size of Um[σ] is given by
the number of particles of the m-th species present in the
system. The size of GA,m[σk], on the other hand, is given
by the number of lattice sites enclosed by the region A.
Note that, separating a factor of Zn in the denominator
of Eq. 2, an explicit form can be identified in the numer-
ator as the result of the so-called “replica trick” (namely
a partition function for n copies of the system, “glued”
together in the region A).

Because we are considering a finite lattice, the single-
particle space is of finite size Nd

x . As in Ref. [12],
we may define our trial state |Ψ〉 as a Slater determi-
nant, letting j components fill some NB single-particle
orbitals in a subset B (the same set of orbitals for all
those j components), and letting the remaining 2N − j
components fill some other set C of, say, NC orbitals
(see Fig. 2). The total number of fermions is therefore
Npart = jNB + (2N − j)NC .

FIG. 2: (color online) Distribution of particles among 2N
fermion species for the proof of the inequality.

With this trial state, the matrix Um will be the same
for species 1, . . . , j and we shall denote it UB; similarly,
Um will be the same for species j+1, . . . , 2N and we shall
denote it UC . Therefore,

P [{σ}] =

n∏
k=1

(detUB[σk])j
n∏

k=1

(detUC [σk])2N−j , (8)

and

Q[{σ}] = (detMB[{σ}])j(detMC [{σ}])2N−j . (9)
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In order to prove the advertised convexity property, we
use Hölder’s inequality, which states that∫

dx|f(x)g(x)| ≤
[∫

dx|f(x)|p
]1/p [∫

dx|g(x)|q
]1/q

,

(10)
for any functions f(x), g(x) for which the integral exists,
and where 1/p + 1/q = 1. We apply this identity to
our path integral expression for exp

(
(1−n)Sn

)
in Eq. 2.

Before doing that, the following should be noted. This
separation of components into j and 2N − j implies that
the integrand on the right-hand-side of Eq. 2 is not in
general positive definite (unless j is even and only if the
determinants are real). However, the integral of Eq. 2 is
naturally bounded from above by the integral over the
absolute value of the integrand, which is what we will
identify as the left-hand side of Eq. 10.

For this purpose, we choose integers n1, n2 such that
0 ≤ 2n1 ≤ j ≤ 2n2 ≤ 2N , and take the integration
measure dx to be D{σ}P̃ [{σ}], where

P̃ [{σ}]=(detMB[{σ}])2n1(detMC [{σ}])2N−2n2 ×
n∏

k=1

(detUB[σk])2n1(detUC [σk])2N−2n2 , (11)

which is positive definite as long as the determinants are
real. This can be guaranteed for attractive interactions.
We take, furthermore,

|f(x)| → |detMB[{σ}]|j−2n1

n∏
k=1

|detUB[σk]|j−2n1 , (12)

|g(x)| → |detMC [{σ}]|2n2−j
n∏

k=1

|detUC [σk]|2n2−j ,(13)

and

p = (2n2 − 2n1)/(j − 2n1), (14)

q = (2n2 − 2n1)/(2n2 − j). (15)

Putting everything together, it is a matter of simple
algebra to see that

Sn[Bj , C2N−j ] ≥ j − 2n1
2n2 − 2n1

Sn[B2n2 , C2N−2n2 ] +

2n2 − j
2n2 − 2n1

Sn[B2n1 , C2N−2n1 ](16)

for all n > 1, where Sn[Bj , C2N−j ] is the estimate of
the entanglement entropy obtained with the trial state
described above. If the trial state has a non-vanishing
overlap with the ground state of the system, as commonly
assumed in AFQMC calculations, then Sn[Bj , C2N−j ] will
converge to the true entanglement entropy of the system
Sn in the limit of large imaginary times.

This is, in essence, the final result. It indicates that
Sn is a convex function, in the sense that its values for

any j between 2n1 and 2n2 are larger than the average
of the values at those two points. We note also that the
inequality is trivially saturated in the absence of inter-
actions, as no path integral is present in Eq. 10 in that
case.
Discussion.– Taking NB = K and NC = K + 1, we

see that the total number of fermions is Npart = jNB +
(2N−j)NC = 2NK+j. Since 0 ≤ j ≤ 2N , we see that Sn

must be convex between 2NK and 2N(K+1), for any K.
The inequality holds in particular forK = 0, which shows
that Sn is convex for all particle numbers 0 ≤ Npart ≤ 2N
as well. These statements are depicted in Fig. 3. We
stress that these results are valid for arbitrary sub-region
A, Rényi entropy n, and spatial dimension. Furthermore,
the system may be in an arbitrary external potential, in
particular a harmonic trap such as those routinely used
in ultracold atom experiments.

FIG. 3: (color online) Convexity of the entanglement en-
tropy Sn as a function of particle number, for a system of 2N
species. The convexity property is valid for systems with par-
ticle numbers between K and K + 1 particles per component,
with K∈N, such that some components have K particles and
the rest K + 1. The property holds for arbitrary region A,
Rényi entropy n, spatial dimension, and external potential.

Remarkably, our main result is also valid even if the
region A is not a region of coordinate space. Indeed,
the formalism of the proof presented here, itself based on
the second-quantization derivations of Ref. [7], makes no
explicit reference to the space in which the single-particle
orbitals are defined. As a consequence, the inequality
Eq. 16 is valid also when Sn is computed in momentum
space, harmonic oscillator space, etc., as long as one can
guarantee that detMm[{σ}] is real.

The above proof can be generalized to finite temper-
ature in the grand-canonical ensemble. The role of the
matrix Um[σk] is now played by its full-sized (Nd

x ×Nd
x )

finite-temperature form Um[σk], such that Um[σk] →
11 + zmUm[σk], where zm is the fugacity of the m-th
species. The matrix M , on the other hand, retains its
definition in terms of reduced Green’s functions, but the
latter are replaced by their finite-temperature counter-
parts. The proof then proceeds in the same fashion, but
one assigns different chemical potentials µB to compo-
nents 1 . . . j, and µC to components j+ 1, . . . , 2N , rather
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than specific particle numbers. The total average par-
ticle number is then 〈Npart〉 = j〈NB〉 + (2N − j)〈NC〉.
Tuning the chemical potentials such that 〈NB〉 = K and
〈NC〉 = K + 1, we see that Sn must be convex between
2NK and 2N(K + 1), for any K, also at finite tempera-
ture.

Throughout the proof we implicitly assumed to be con-
sidering non-relativistic systems, for which particle num-
ber is a good quantum number. The generalization of our
result to relativistic systems, at least in the absence of
gauge fields, can be expected to be straightforward, with
states of fixed particle number replaced by states of fixed
charge. Those systems will be considered elsewhere.

Summary and Conclusions.– In this work, we have
connected a recently derived path-integral form of the
Rényi entanglement entropy Sn with a theorem originally
proven in the context of nuclear structure to show that
Sn is a convex function when the particle number is var-
ied. The inequality underlying the property of convexity
is remarkably general, holding for all Rényi entropies, all
sub-system sizes, particle numbers and dimensions, as
well as arbitrary external trapping potentials. If an ana-
lytic continuation in n is possible then we expect convex-
ity to be maintained for the von Neumann entropy. The
fundamental constraint of the proof is the positivity of
the probability measure, which in turn only depends on
the SU(2N) symmetry and the interaction being attrac-
tive. The inequality holds in particular for the attractive
Hubbard model in arbitrary dimensions. These results
can be further generalized to finite temperature and to
relativistic systems.

While the experimental determination of the entan-
glement entropy is currently beyond reach, attempts are
underway with ultracold atoms, in particular in optical
lattices (see e.g. [18]). As is well known, these systems
are remarkably malleable. Most relevant for this work is
the study of few-atom systems of atomic species with a
varying number of internal degrees of freedom, such as
Yb and Sr isotopes [19]; these make it possible to realize
SU(6) and SU(10) symmetries, thus going well beyond
the usual SU(2) case commonly realized with Li and K
atoms. It is for these systems that the results of this
work represent a prediction.

On the other hand, as pointed out in Ref. [12], it ap-
pears that real nuclei respect the inequalities that would
strictly speaking only be valid in the attractive SU(4)-
symmetric limit of degenerate nucleons. It would there-
fore be of interest to determine whether the entangle-
ment entropy of real nuclei also respects the convex-
ity property. With recent advances in coupled-cluster
and Green’s function and lattice Monte Carlo calcula-
tions, this may be expected to be determined theoreti-
cally sooner than experimentally.
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