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Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena

such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid

state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a

direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures

are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this

system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental

scope for atomic dipolar Fermi gases.

Weyl superfluids or semimetals represent recent develop-

ments in generalizing topological phases from gapped to gap-

less systems (e.g., from topological insulators to semimet-

als), in condensed matter physics [1, 2]. These Weyl states

are characterized by the presence of two (or more) gapless

Weyl points, which are topologically protected against small

perturbations. The Weyl nodes lead to a variety of fascinat-

ing phenomena such as unusual surface states [3, 4], Hall ef-

fects [5, 6], and other transport features [7, 8]. Finding elec-

tronic materials supporting Weyl states has attracted consid-

erable interests [9]. There are many proposed potential candi-

date materials, such as the pyrochlore iridates [3], topological

insulator multilayer structures [7, 10–12], as well as certain

quasicrystals [13]. However, there is still no compelling ex-

perimental evidence for the observation of one. In the field

of ultracold atoms, this phase was predicted to appear in spin-

orbit coupled Fermi gases [14, 15]. This line of active research

awaits for the future experimental breakthrough of synthesiz-

ing higher dimensional artificial spin-orbit coupling with con-

trolled heating [16]. After all, the search for Weyl supercon-

ductors remains an open problem for both electronic and ul-

tracold atomic systems.

In this letter, we report the emergence of Weyl superfluidity

in a 3D single-component dipolar Fermi gas with an effective

attraction engineered by a rotating external field. Recently,

degenerate dipolar Fermi gases witnessed rapid developments

in both magnetic dipolar atoms (such as 167Er [17, 18] and
161Dy [19, 20] atoms) and polar molecules [21, 22], stimu-

lating tremendous interests in dipolar effects in many-body

phases. The effects of the anisotropic dipolar interaction on

the fermion many-body physics have been extensively inves-

tigated [23]. In particular, this provides the possibility of su-

perfluid pairing between dipolar Fermi atoms in spinless or

multicomponent systems [24–27] at low temperatures. For

dipoles aligned parallel to the z direction, a p-wave super-

fluid state with the dominant pz symmetry was studied in a

three-dimensional dipolar Fermi gas [28] and the competition

between this superfluidity and nematic charge-density-wave

(CDW) was also discussed [29]. For a dipolar Fermi gas

confined in a 2D plane, superfluid states of p-wave symme-

try [30–32], including a p+ ip state in particular [31, 32], are

predicted.

The key idea here is to engineer a direction-dependent two-

body effective attraction, which supports Cooper pairs with

the chirality encoded in the p-wave pairing gap. This Weyl

superfluid state breaks time reversal symmetry as well as in-

version symmetry. Such broken symmetries have profound

implications for the interesting topological defects [1]. We

shall describe this state in a 3D magnetic dipolar Fermi gas

composed of one hyperfine sate, which has been realized in

the experimental system of 167Er [17] recently. The direc-

tion of dipole moments can be fixed by applying an external

magnetic field. Let the external field be orientated at a small

angle with respect to the xy-plane and rotate fast around the

z axis. The time-averaged interaction between dipoles [33]

is isotropically attractive in the xy-plane and repulsive in the

z-direction. In general, the attraction is expected to cause

Cooper pairing instability while the repulsion should restrict

the pairing from certain nodal directions. Their combined ef-

fect could give rise to Weyl Fermi points for the Bogoliubov

quasi-particles. Such a heuristically argued result is indeed

confirmed by a self-consistent calculation through the model

to be introduced below.

Effective model. Consider a 3D spinless dipolar Fermi gas

subjected to an external rotating magnetic field

B(t) = B[ẑ cosϕ+ sinϕ(x̂ cosΩt+ ŷ sinΩt)],

where Ω is the rotation frequency,B is the magnitude of mag-

netic field, the rotation axis is z, and ϕ is the angle between

the magnetic field and the z axis. In strong magnetic fields,

dipoles are aligned parallel to B(t). With fast rotations, the

effective interaction between dipoles is the time-averaged in-

teraction

V (r) = d2(3 cos2 ϕ−1)
2r3 (1− 3 cos2 θ) ≡ d′2

r3 (1 − 3 cos2 θ),

where d′2 ≡ d2 (3 cos2 ϕ−1)
2 with the magnetic dipole moment

d, r is the vector connecting two dipolar particles, and θ is

the angle between r and the z axis. The effective attraction,
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V (r) < 0, is created by making cosϕ <
√

1/3, which is our

focus in this work.

The effective Hamiltonian of the system above

is given by H =
∫

d3rψ†(r)[−~
2▽2

2m − µ]ψ(r) +
1
2

∫

d3r
∫

d3r′ψ†(r)ψ†(r′)V (r− r′)ψ(r′)ψ(r), where

ψ(r) is the fermion field and µ is the chemical potential.

Due to the attractive interaction, fermions tend to pair with

each other and form a superfluid state at low temperatures. To

study this superfluid state, we construct a general theory to de-

scribe a spinless Fermi gas by a fully self-consistent Hartree-

Fock-Bogoliubov method. The details are given in Sup-

plementary Materials. Constructing a bosonic effective ac-

tion by Hubbard-Stratonovich transformation, we obtain self-

consistent equations under a saddle-point approximation for

the fermion bilinears κ(r) =
∫

d3r′V (r− r′)ψ†(r′)ψ(r′),

λ(r, r′) = −V (r− r′)ψ†(r)ψ(r′), and ∆̃(r, r′) =
V (r− r′)ψ(r′)ψ(r). Correspondingly, the Hartree-Fock self-

energy and superconducting gap are given as

Σ(r′, r) ≡ 〈κ(r)〉δ(r − r′) + 〈λ(r′, r)〉,

∆(r′, r) ≡ 〈∆̃(r′, r)〉, (1)

where 〈. . .〉 means the expectation value in the ground state.

3D uniform dipolar Fermi gas. We now apply the general

theory outlined above to the system of a 3D uniform spinless

dipolar Fermi gas in the presence of a rotating magnetic field.

From the symmetry of the system, at least for not too strong

interaction strength, we anticipate that pairing only occurs be-

tween a particle with momentum k and another with momen-

tum −k as in the standard BCS theory. Due to the transla-

tional symmetry, it is convenient to study this problem in the

momentum space. After Fourier transformation of Eq. (1), the

Hartree-Fock self-energy and the pairing gap read

Σk = V (0)n− 1
υ

∑

k′ V (k− k′)12

[

1− ξ
k′

E
k′

tanh(β2Ek′)
]

,

(2)

∆k = − 1
υ

∑

k′ V (k− k′) ∆
k′

2E
k′

tanh(β2Ek′), (3)

where Ek is the quasi-particle excitation energy given by

Ek =
√

ξ2k + |∆k|2 with the kinetic energy of fermions

ξk = εk + Σk − µ and εk = ~
2k2

2m . The interaction be-

tween two dipoles in the momentum space is given by V (q) =
4πd′2

3 (3 cos2 θq − 1), with the angle θq between momentum

q and z axis, n is the total density, υ is the volume, and

β = 1/(kBT ).

It is known that the gap equation (Eq. (3)) has ultravio-

let divergence [26]. The origin of the divergence can be at-

tributed to the singularity of the dipolar interaction potential

for large momentum, or equivalently for short distance. Just

as in the treatment of two-component Fermi gas with contact

interaction [34], we need to regularize the interaction in the

gap equation (Eq. (3)). The divergence can be eliminated by

expressing the bare interaction V (k − k′) in Eq. (3) in terms

of the vertex function (scattering off-shell amplitude) [35] as

Γ(k−k′) = V (k−k′)− 1
υ

∑

q Γ(k−q) 1
2εq
V (q−k′), and

the gap equation will be renormalized as

∆(k) = − 1
υ

∑

k′ Γ(k− k′)∆(k′)

[

tanh βE(k′)
2

2E(k′) − 1
2εk′

]

.

(4)

Note that the Hartree term for the selfenergy in Eq. (2), V (0)n
vanishes, since for dipolar interaction in 3D uniform system,

V (0) = 0 [36] and renormalization of the interaction has a

negligible effect on the self-energy. Then, the Hartree-Fock

self-energy is expressed as

Σk = − 1
υ

∑

k′ V (k− k′)12

[

1− ξ
k′

E
k′

tanh(β2Ek′)
]

. (5)

The total density n can be obtained from the thermody-

namic potential Ω by using the relation N = −∂Ω/∂µ,

n =
∑

k
1
2υ

[

1− ξk
Ek

tanh(β2Ek)
]

. (6)

Under the constraint of Fermi statistics for this single com-

ponent dipolar Fermi gas, the dominant pairing instability is in

the channel with orbital angular momentum L = 1. The most

stable low temperature phase has px + ipy symmetry, follow-

ing from the fact that this phase fully gaps the Fermi surface,

in contrast to competing phases, such as px or py superfluid

state [37]. Note that in the presence of a rotating magnetic

field, all the dipoles rotating with respect to the z-axis, so the

system has a SO(2) spatial rotation symmetry. This symme-

try is not broken in the px+ ipy pairing state, and we can thus

write down the Cooper pair as ∆k ≡ ∆(kρ, kz)e
iϕk , where

kρ =
√

k2x + k2y and ϕk is the polar angle of the momentum

k in the xy-plane, to simplify the calculation in Hartree-Fock-

Boguliubov approach.

Weyl fermions. With the time-reversal symmetry sponta-

neously broken in the superfluid state, topological properties

emerge in quasi-particle excitations, which are described by a

mean field Hamiltonian HSF =
∑

k[ξkc
†
kck +

∆∗

k

2 c−kck +
∆k

2 c
†
kc

†
−k], with ck the fermion annihilation operator. This

Hamiltonian can be expressed in the matrix form by

HSF =
∑

k

(c†k, c−k)

(

ξ(k)
2

∆(k)
2

∆∗(k)
2 − ξ(k)

2

)

(

ck
c†−k

)

≡
∑

k

(c†k, c−k)~d(k) · ~σ

(

ck
c†−k

)

.

where the ~d vector is defined in terms of the Pauli matrices

σ’s. The dx,y components vanish along the kz axis, whereas

along this axis, dz vanishes at only two pointskC
+ = (0, 0, kC+)

and kC
− = (0, 0, kC−)(= −kC

+) (Fig. 1a). In the (kx, ky) mo-

mentum plane with kC− < kz < kC+ , ~d(k) wraps around a

sphere as shown in Fig. 1b. Evidently, it points to the south

pole on the kz axis, while with increasing kρ, the ~d(k) vector

varies continuously and eventually points to the north pole as

kρ → ∞. This vector ~d(k) thus forms a skyrmion in the mo-

mentum space with a topological charge ±1 (where the ‘±’
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sign reveals the spontaneous time-reversal symmetry break-

ing). However, in other regions kz > kC+ or kz < kC−, the

topological charge vanishes. These two gapless points kC
±

are Weyl nodes, defining the corresponding topological tran-

sitions in the momentum space [7, 15]. Close to the Weyl

nodes, the Hamiltonian takes the form of 2 × 2 Hamiltonian

of a chiral Weyl fermion [38]. We have checked that the

quasi-particle energy dispersion Ek is linear around both two

Weyl points, for instance as shown in Fig. 2b when the in-

teraction strength J = 3 where J ≡ |md′2

~2 kF |. As shown

in Fig 2c and d, the Weyl nodes are hedgehog-like topo-

logical defects of the vector field ~d(k), which are the point

source of Berry flux in momentum space, with a topologi-

cal invariant NC = ±1. Here NC is defined by NC =
1

24π2 ǫµνγχtr
∮

Σ dS
χG∂G−1

∂kµ
G∂G−1

∂kν
G∂G−1

∂kγ
, where G−1 is the

inverse Green’s function for the quasi-particle excitation, Σ
is a 3D surface around the isolated Fermi point kC

+ or kC
−,

and tr stands for the trace over the relevant particle-hole de-

grees of freedom [1]. The quasi-particle excitations near the

Fermi points realize the long-sought low-temperature analog

of Weyl fermions as originally proposed in particle physics.

These Weyl nodes are separated from each other in momen-

tum space. They can not be hybridized, which makes them

indestructible, as they can only disappear by mutual anni-

hilation of pairs with opposite topological charges. This is

the mechanism of topological stability of this Weyl super-

fluid state, which is distinct from the spectral-gap protection

in insulating topological phases. To characterize the exis-

tence of Weyl fermions, we calculate the fermionic density

of states (DOS) for superconducting states [39, 40] N(E) =
1

(2π)3

∫

d3k1
2 (1+

ξ(k)
E(k) )δ(E−E(k)), which is directly related

to the radio frequency (rf) spectroscopy signal [41]. With lin-

ear dispersion near Weyl nodes, we find N(E) ∝ E2 when

E → 0, which is a direct manifestation of Weyl fermions.

This behavior of DOS is confirmed in our numerics (Fig. 2a).

The experimental advances in rf measurement [42, 43] makes

the detection of this signal experimentally accessible.

The other important feature of Weyl fermions realized in

this dipolar gas is that they have anisotropic dispersion, re-

flecting the anisotropy of dipolar interactions. In Fig. 2b, the

conic quasi-particle dispersion as a function of the momen-

tum k− kC
+ is shown. This momentum is chosen with a cer-

tain angle θ̃ respecting to the kz axis. The cones with positive

and negative branches correspond to the Bogoliubov quasi-

particle energy ±E(k − kC
+). The Fermi velocity, shown by

the slope of the quasi-particle dispersion, strongly depends on

the angle θ̃.

Anisotropic superconducting gap. We now discuss the su-

perconducting gap for fermions resulting from anisotropic

dipole-dipole interaction. For clarity of demonstration, we

take the first-order Born approximation by replacing the ver-

tex function Γ(k − k′) in the gap equation (Eq. (4)) by the

bare dipolar interaction V (k − k′). By numerically solving

the Hartree-Fock self-energy equation (Eq. (5)), the gap equa-

tion (Eq. (4)), and number equation (Eq. (6)) self-consistently,
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FIG. 1: (a) Gapless points along the kz axis, where the unit of mo-

mentum is the Fermi momentum kF . (b) Illustration of the skyrmion

configuration formed by ~d(k) vector in the (kx, ky) plane, with fixed

kz ∈ (kC
−, kC

+). The arrows show dx,y components, and the colors

index the dz component.
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FIG. 2: (a) Density of states (DOS) which has been defined in the

main text in units of nF /EF , where nF =
k3
F

6π2 and EF =
~
2k2

F

2m
. (b)

Quasi-particle dispersion around the gapless points. There are four

branches of conic energy spectra shown here. For the two branches in

the middle we choose θ̃ = π/10, while for the other two we choose

π/2. (c) and (d) Hedgehog-like topological defects formed by the
~d(k) vector around two Weyl nodes.

the superconducting gap anisotropy has been investigated. As

shown in Fig. 3a, the magnitude of the order parameter (super-

conducting gap) on the Fermi surface ∆F (θk) monotonically

increases when enlarging the angle θk between the momen-

tum k and z axis. The maximum value of ∆F (θk) is reached

in the direction perpendicular to the dipoles, say θk = π
2 . This

is because the dipolar interaction is mostly attractive when

θk = π
2 . In the direction of the dipoles, namely θk = 0

the order parameter vanishes. Fig. 3b shows that the order

parameter is also dependent on kρ with fixed kz . This can

be understood from the analysis of the gap equation (Eq. (4))

that the main contribution to the integral comes from the re-

gion of small momentum which is close to the Fermi surface.

In the weak interaction regime, the pairing order parameter

is exponentially small, for instance when J = 3 it is around

10−3EF . However, when the interaction strength increases,

the superconducting gap will be comparable to EF . For ex-



4

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

θ/π

∆
F

/∆

 

 

J=7
J=3

(a)

(θ
 ) k

 (
  
  
 )

π
/2

F

0.38 0.44 0.5

0.9988

0.9992

0.9996

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

/kF

∆  

 

J=7

J=3

(b)

ρk

( 
   

,  
  =

0
)/

k ρ
k z

∆
( 

   
,  

  =
0

)
k

F
k

z

FIG. 3: Anisotropic superconducting pairing order parameter with

different interaction strengths J = 3 and 7 (J ≡ |md′2

~2
kF |). (a) The

superconducting gap ∆F (θk) on the Fermi surface versus the angle

θk between the momentum k and z axis. (b) The superconducting

gap ∆(kρ, kz) as a function of kρ with fixed kz .

ample when J = 15 it reaches around 0.4EF . The anisotropy

of the order parameter provides a crucial difference from both

s [34] and p-wave pairing [44] due to a short-range attractive

interaction. This anisotropy ensures the anisotropic momen-

tum dependence of the gap in the spectrum of single particle

excitations. For example, excitations with momenta perpen-

dicular to the direction of the dipoles acquire the largest gap.

In contrast to this, the excitations with momenta in the direc-

tion of the dipoles remain unchanged. Therefore, the response

of this dipolar superfluid Fermi gas to small external pertur-

bations will have a pronounced anisotropic character.

Finite temperature phase transition. Upon increasing tem-

perature the Weyl superfluid state will undergo a phase tran-

sition to a normal state. By numerically solving the Hartree-

Fock self-energy equation (Eq. (5)), gap equation (Eq. (4)),

and number equation (Eq. (6)) self-consistently at finite tem-

perature, the BCS transition temperature is obtained as shown

in Fig. 5. We find that the BCS transition temperature is a

monotonically increasing function of the interaction strength

J . However, the strong enough interaction will cause the sys-

tem to suffer from the mechanical instability. The reason for

that is as follows. The magnitude of superconducting gap in-

creases with enhancing the interaction strength. Due to the

attractive nature of the effective interaction between dipoles,

the free energy of this dipolar gas is smaller than that of an

ideal Fermi gas. This energy reduction increases with the in-

teraction strength (or equivalently the density of the gas with

a certain dipole moment). When the interaction strength is

large enough, the effect of the interaction is dominant and the

system can be unstable. As shown in Fig. 4, the chemical po-

tential is a monotonically decreasing function when the den-

sity is above a critical value, and the compressibility is nega-

tive, indicating that the superfluid state is dynamically unsta-

ble. By considering the mechanical instability of the system,

as shown in Fig. 5, the finite temperature phase diagram is

obtained. We find that the BCS transition temperature of a

stable superfluid state can reach around 0.2EF at mean-field

level, which approaches to the current experimental tempera-

ture region [17, 19].

In the current experiments, for example, 167Er atom’s mag-

netic dipole moment is 7µB and the density of the system
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FIG. 4: Chemical potential µ versus the density n. In (a), the tem-

perature is T = 0, while in (b) the temperature is kBT = 0.1EF .

Here, the unit of µ is Ed ≡ ~
6/(m3d4) and the unit of n is

nd ≡ [~2/(md2)]3.
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FIG. 5: Finite temperature phase diagram—The solid line stands for

the BCS transition temperature which separates the region between

the superfluid state (SF) and normal state (NG). The area on the right

hand side of the dash line demonstrates the instability of the system

due to the strongly attractive interaction.

is about n = 4 × 1014cm−3. The Fermi energy is given

by EF = ~
2

2m(6π2n)2/3 ≈ 0.16MHz and the correspond-

ing Fermi temperature is TF = EF

kB
≈ 1µK. To increase the

effective attraction, one may consider adding a shallow opti-

cal lattice. For instance with lattice strength V = 6ER, the

BCS transition temperature can reach around 3nK. A similar

estimate can be obtained for 161Dy atom which has a larger

magnetic dipole moment of 10µB, the corresponding dipo-

lar interaction strength is around two times larger than that of
167Er. Under the same condition, the BCS transition temper-

ature can reach around 50nK. Furthermore, taking advantage

of recent experimental realization of Feshbach resonance in

magnetic lanthanide atoms such as Er [45], the dipole-dipole

interaction is highly tunable. The transition temperature is es-

timated to reach around 0.2µK or even higher. This high tran-

sition temperature Tc makes it promising to obtain the Weyl

superfluid state in experiments.

Conclusion. We propose that an anisotropic Weyl super-

fluid state can be realized in a 3D spinless dipolar Fermi gas.

The crucial ingredient of our model is the direction-dependent

effective attraction between dipoles generated by a rotating

external field. The long-sought low-temperature analog of

Weyl fermions of particle physics has been found in the quasi-

particle excitations in this superfluid state. The stability and

the transition temperature are also studied, which will be use-
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ful for exploring this Weyl superfluid state in future experi-

ments.
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