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We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding
lattice in momentum space. This lattice, coined the superradiance lattice (SL), can be constructed
based on electromagnetically induced transparency (EIT). For a one-dimensional SL, we need the
coupling field of the EIT system to be a standing wave. The detuning between the two components
of the standing wave introduces an effective uniform force in momentum space. The quantum lattice
dynamics, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic
localization can be observed in the SL. The two-dimensional SL provides a flexible platform for Dirac
physics in graphene. The SL can be extended to three and higher dimensions where no analogous
real space lattices exist with new physics waiting to be explored.

PACS numbers: 42.50.Nn, 61.50.Ah

Introduction.—Since the early days of quantum me-
chanics, the periodic lattice has been a platform for ver-
satile quantum phenomena of electrons, such as Bloch
oscillations [1, 2], Wannier-Stark ladders [3] and dynamic
localization [4, 5]. Bloch oscillations and Wannier-Stark
ladders have been observed in superlattices [6, 7] and
optical lattices [8, 9]. The evidence of dynamic localiza-
tion and Bloch band collapsing [10] under periodic forces
were also observed in optical lattices [11–13] and pho-
tonic structures [14]. The related Floquet lattice phe-
nomena include quantum phase transitions [15–18], Ma-
jorana fermions [19, 20], topological insulators [21–23],
artificial gauge potentials [24–27] and edge states [28, 29].
Apart from these nonrelativistic physics, the invention of
graphene [30] brought a new stage of relativistic Dirac
physics [31] in two-dimensional lattices. Nevertheless,
the observation of these phenomena remains challeng-
ing. Novel types of lattices [32–35] provide new testing
grounds for the rich physics mentioned above.

In this Letter, we introduce the concept of the super-
radiance lattice (SL), a lattice in momentum space [36].
The conventional lattice has discrete translational sym-
metry in position space. The tight-binding model which
allows electron hopping between nearest neighbours is di-
agonal in momentum space. The crystal momentum k is
a good quantum number labelling each eigenstate. On
the other hand, the SL corresponds to a tight-binding
model in momentum space which has good quantum
numbers r in position space. The dynamics of r in an
SL is analogous to the dynamics of k in a real space lat-
tice. We show that Bloch oscillations, Wannier Stark
ladders and Bloch band collapsing can be observed in an
SL based on electromagnetically induced transparency
(EIT). The two-dimensional SL provides a tunable quan-
tum optics model for Dirac physics in graphene.

The momentum transfer between a single two-level
atom and standing wave light is quantized. The states of
the atom with quantized recoil momenta thus have dis-
crete translational symmetry in momentum space [36].
To inhibit the recoil motions, we can use fixed three-level
systems in solids, which effectively have infinite mass
thanks to the Lamb-Mössbauer effect [37–39]. The phase
correlations of the timed Dicke states, rather than the
recoil momenta of single atoms, set the lattice points in
momentum space.
Dicke spinor.—A collection of N two-level atoms cou-

pled by a single electromagnetic (EM) mode is described
by the Dicke model [40]. If the atoms are randomly dis-
tributed in an area much larger than the wavelength, the
first excited state which is the timed Dicke state [41] can
record the momentum of the absorbed photon via phase
correlations between excited atoms,

|ekp
〉 = 1√

N

N
∑

α=1

eikp·rα |g1, g2, ..., eα..., gN〉. (1)

Here kp is the wave vector of the photon, rα is the po-
sition of the αth atom, which has the ground state |gα〉
and excited state |eα〉. The atomic levels are shown in
the inset of Fig.1 (a). Now we apply another EM plane
wave mode k1 that couples |e〉 to a metastable state |m〉
via the interaction Hamiltonian (in the rotating wave ap-

proximation) HI = −∑N
α=1 ~κ1a1e

ik1·rα |eα〉〈mα|+ h.c.,
where a1 is the annihilation operator of mode k1, κ1

is the vacuum coupling strength (assumed to be real).
Then |ekp

, n1〉 is coupled to |mkp−k1
, n1 + 1〉 where n1

is the photon number of mode k1, and |mkp−k1
〉 is de-

fined by replacing e with m in Eq. (1). The Rabi fre-
quency κ1

√
n1 + 1 is independent of the atom number

N . The two-states |ekp
, n1〉 and |mkp−k1

, n1 + 1〉 form a
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FIG. 1: (Color online) (a) The real space configuration and
the internal atomic states of a 1D bipartite SL in momentum
space. An EM plane wave mode kp collectively excites the
transition from |g〉 to |e〉. The standing wave formed by modes
k1 and k2 couples the transition between |e〉 and |m〉. (b)
The 1D bipartite SL in momentum space. The red (blue)
circles represent the |mk〉 (|ek〉) states. The solid (dashed)
lines represent the interaction via mode k1 (k2). The distance
between the adjacent sites is |k1| and the direction of k1 is
defined to the right.

two-component Dicke spinor.
1D bipartite SL.—By introducing a second mode k2 =

−k1, the interaction Hamiltonian

HI = −
N
∑

α=1

~(κ1a1e
ik1·rα + κ2a2e

ik2·rα)|eα〉〈mα|+ h.c.,

(2)
extends the Dicke spinor to a one-dimensional (1D) bi-
partite SL, as shown in Fig.1 (a). The state |ekp

, n1, n2〉
can be coupled either by mode k1 to |mkp−k1

, n1+1, n2〉,
or by mode k2 to |mkp+k1

, n1, n2 +1〉, as shown in Fig.1
(b). The Rabi frequencies are site-dependent. However,
if the two fields are in coherent states with large average
photon numbers 〈ni〉 ≫ 1 (i = 1, 2), the Rabi frequen-
cies are approximately constant Ωi = κi

√

〈ni〉. We can
rewrite the interaction Hamiltonian in Eq. (2) into a
tight-binding form,

HI = −
∑

j

(~Ω1ê
†
jm̂j + ~Ω2m̂

†
j+1êj) + h.c., (3)

where the creation operators in the jth unit cell are

ê†j =
1√
N

N
∑

α=1

ei(kp+2jk1)·rα |eα〉〈gα|,

m̂†
j =

1√
N

N
∑

α=1

ei[kp+(2j−1)k1]·rα |mα〉〈gα|,
(4)

with |G〉 ≡ |g1, g2, ..., gN〉 the ground state and the su-

perradiant states |ekp+2jk1
〉 = ê†j |G〉. The Hamiltonian

in Eq.(3) is also valid for many excitations if the excita-
tion number is much less than the atom number, and the
operators are approximately bosonic, [êj , ê

†
j′ ] = δjj′ .

The tight-binding model in momentum space is diago-
nal in its reciprocal position space. For simplicity, we let
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FIG. 2: (Color online) (a) The dispersion relation of a 1D SL.
(b) The DOS of the SL (black solid) and the standing wave
coupled EIT absorption spectrum (red dash). γ = 0.06Ω1 ,
γ′ = 0. Assuming that each eigenstate has a finite life time,
the DOS is Lorentzian broadened with width 0.01ǫmax to fit
with the EIT absorption spectrum.

Ω1 = Ω2. The dispersion relation is

ǫ± (r) = ±2~Ω1 cos(r · k1), (5)

as shown in Fig.2 (a). The energy band is directly shown
by the interference pattern of the coupling standing wave.
Detection by the standing wave coupled EIT.—Levels

|e〉 and |m〉 are resonantly coupled by EM modes k1 =
k1x̂ and k2 = −k1x̂. A weak field kp = kpx̂ which probes
the transition from the ground state |g〉 to level |e〉 should
create excitations in the 1D SL. The density of states
(DOS) of the SL, D(ǫ) = N/π

√

ǫ2max − ǫ2 with ǫmax =
2~Ω1, can therefore be tested by the absorption spectrum
of kp, which on the other hand can be obtained from the
imaginary part of the EIT susceptibility [42, 43],

χ (x) =
3πNΓ(∆p − iγ′)

(∆p − iγ′)(∆p − iγ)− |Ω1eik1x +Ω2e−ik1x|2
.

(6)
Here N is the atomic numbers in the volume c3/ω3

eg

where ωeg is the transition frequency between |e〉 and |g〉.
γ and Γ are the decoherence rate and radiative decay rate
between |e〉 and |g〉, respectively. γ′ is the decoherence
rate between |g〉 and |m〉. ∆p = ωeg − νp is the detuning
of the probe field.
The absorption in Eq. (6) is periodic in space. The

total absorption spectrum can be obtained by averaging
Eq. (6) over one period,

A (νp) ∝ Im

[

k1
π

∫ π
2k1

− π
2k1

χ(x)dx

]

. (7)

In Fig.2 (b), we plotted the density of states D and the
absorption spectrum A. Their overlap demonstrates the
equivalence between the 1D SL and the standing wave
coupled EIT. The major difference is that the absorption
spectrum A has a transparency point at zero detuning
due to the Fano interference [50, 51].
Effective force in momentum space.—An effective uni-

form force in an SL should introduce a potential linear
with the momenta of the sites. From Fig.1 (b), we see
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FIG. 3: (Color online) The absorption spectra of 1D SL in
an oscillating force. (a) Absorption spectra as function of de-
tuning ∆p and the amplitude-frequency ratio of the effective
oscillating force f . δ1 = δ2 = 0. The band collapses at the
Bessel function zeros J0(f) = 0 for f = 2.4 and 5.5. (b) Ab-
sorption spectra for δ1 = −δ2 = νd. The band collapses at
the Bessel function zeros J1(f) = 0 for f = 3.8 and 7.0. The
other parameters are Ω1 = Ω2 = 6γ, νd = 12γ, γ = 1, and
γ′ = 0.001.

that the superradiant states are correlated with photon
numbers that are linear with the momenta. We therefore
can introduce an effective uniform force in momentum
space by changing the energy of the photons of the two
modes. The unperturbed Hamiltonian is

H0 =

N
∑

α=1

~ (ωe|eα〉〈eα|+ ωm|mα〉〈mα|)

+ ~ν1a
†
1a1 + ~ν2a

†
2a2,

(8)

where ~ωi (i = e,m) is the atomic eigenenergy and νi
(i = 1, 2) is the angular frequency of the fields. The en-
ergy difference between |ekp

, n1, n2〉 and |mkp−k1
, n1 +

1, n2〉 is ~δ1 = ~ωem − ~ν1 where ωem = ωe −
ωm, and the energy difference between |ekp

, n1, n2〉 and
|mkp+k1

, n1, n2 + 1〉 is ~δ2 = ~ωem − ~ν2. The quantity
~δ0 = ~ωem− 1

2 (ν1+ ν2) is the energy difference between
the two sublattices of |e〉 and |m〉. The detuning between
the two fields 2δ = ν1 − ν2 is the potential difference be-
tween adjacent unit cells. The potential is linear of the
momentum p = ~k = −i~

∑

α ∇rα ,

V (p) = −F · p, (9)

where the momentum-space forceF = −∇pV (p) = δ
k1

k̂1

is in contrast to the real-space force [9, 10, 13, 14, 43].
Therefore, the effective Hamiltonian is

H =
∑

j

~(δ0 − 2jδ)ê†j êj − ~(2j − 1)δm̂†
jm̂j

−
(

~Ω1ê
†
jm̂j + ~Ω2m̂

†
j+1êj + h.c.

)

.

(10)

The equation of motion of the position operator rα of the
αth atom is

ṙα =
1

i~
[rα,−F · p] = −F = − δ

k1
k̂1. (11)

It is easy to understand this equation in real space. The
detuning δ leads to a moving standing wave with velocity
−ṙα. By adiabatic following, the position rα will move
with the velocity ṙα. After time T = π/δ, the standing
wave moves a period λ1/2 = π/k1 and the system recov-
ers its original state, which is the Bloch oscillation in the
SL.

Bloch band collapsing.—If the effective force F =
F(t)x̂ is periodic in time, the band collapsing may oc-
cur [5, 10, 52]. We make the frequencies of the two
fields time-dependent, νi + ∆i cos νdt (i = 1, 2), which
introduces an oscillating force in the SL. In particular
for δ1 = −δ2 = nνd with integer n and ∆2 = −∆1, the
excitation in the SL is driven by an effective force F(t) =
Fs+Fd cos νdt with static component Fs = −nνd/k1 and
dynamic component Fd = ∆1/k1. The quasienergy band
is [52]

ǫn (x) = ±2Ω1Jn (f) cos(xk1), (12)

where Jn(f) is the nth order Bessel function of the first
kind and f = ∆1/νd. One interesting feature of this
Floquet quasienergy band is that it collapses at the zeros
of Jn(f).

Fig.3 (a) shows the EIT absorption spectra associated
with the quasienergy bands for n = 0 [43]. At f = 0,
the absorption spectrum has a broad DOS of a bipartite
lattice. Increasing f leads to a narrower energy band
following J0(f) and finally the energy band collapses at
f = 2.4, where a strong absorption peak appears at the
zero detuning. The separation between the Floquet en-
ergy bands νd = 2Ω1 is large and the interaction between
the states from different bands is weak. Therefore, most
of the upper and lower Floquet bands are not visible.
However, near the band collapsing points f = 2.4, the
two Floquet sidebands is vaguely visible due to the large
DOS.

The Wannier-Stark ladder appears if the force has a
static part. In Fig.3 (b), we plot the absorption spectra
for n = 1. If f = 0, the force is purely static, and three
peaks are shown at ∆p = 0, ±νd, which are the energies
of the states in the Wannier-Stark ladder. As f increases,
we observe energy bands following Eq. (12) with n = 1.
The bands collapse at the zero points of J1(f), f = 3.8
and 7.0. These are consistent with the results of electrons
[53–55]. The band collapsing for some other cases are
discussed in the Supplementary Material [43].

2D and higher dimensional SL.—The 1D superradi-
ance chain can be extended to a 2D honeycomb lattice by
introducing three-mode coupling field with wave vectors

k1 = k(− 1
2 x̂ −

√
3
2 ŷ), k2 = kx̂ and k3 = k(− 1

2 x̂ +
√
3
2 ŷ),

as shown in Fig.4 (a). In Fig.4 (b), we plot the 2D SL
absorption spectrum, which overlaps with the DOS of
graphene [30, 31]. A striking feature is that the EIT
point in the 2D SL at ∆p = 0 corresponds to the Dirac
point in graphene [56]. The 2D SL provides a highly
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FIG. 4: (Color online) (a) The graphene structure of the 2D
SL. Timed Dicke states with |e〉 and |m〉 correspond to the
two sublattices of graphene. The three bonds to the nearest
neighbour correspond to the three coupling fields. (b) The
DOS of graphene (blue dash) and the absorption spectrum of
the 2D SL (red solid). The Rabi frequencies of the three cou-
pling fields are all 20γ. γ = 1, γ′ = 0.001. Correspondingly,
the nearest-neighbour hopping coefficents of graphene are set
as 20.

tunable platform for the Dirac physics in graphene [30],
whose material properties are fixed. The hopping coeffi-
cients and on-site potentials can be easily tuned by the
strengths and frequencies of the coupling fields. Interest-
ing graphene physics in the 2D SL, such as Berry phases,
artificial gauge field and Haldane model [56] will be dis-
cussed elsewhere [57].

Similarly, four-mode coupling field can construct
diamond-structure tight-binding models. A particular
interesting subject to be investigated in the future is
the tight-binding SL in dimensions higher than three
when the number of the coupling fields is more than
four. Since real-space tight-binding models have at most
three-dimensions, a wealth of new physics such as the
4D quantum Hall effect [58] may emerge from the extra
dimensions of SL.

Discussion.—The quantum dynamics of the 1D SL can
be detected by the electromagnetically induced grating
(EIG) [59] where the nth order diffraction is emitted by
the superradiant state |ekp+2nk1

〉. EIG [60, 61] and bi-
chromatic EIT [62] have been experimentally observed
without being related to tight-binding lattices. Since
they only focused on the dynamics of the light, the rich
physics concerning the timed Dicke states (many of them
are subradiant and thus not detectable in the diffraction
of EIG) were ignored. Nevertheless, EIG and the related
experiments can be further used to observe the dynamic
localization via the disappearance of the EIG diffraction,
and many other condensed-matter phenomena in the 2D
and higher dimensional SL.

The SL can be realized in cold atoms if the Doppler
shift due to the recoil is much smaller than the cou-
pling field Rabi frequency [43]. For example, we can
choose 85Rb D1 line with |g〉 = |52S1/2, F = 2〉, |e〉 =
|52P1/2, F = 2〉 and |m〉 = |52S1/2, F = 3〉. The de-
coherence rate γ = 2.9MHz. For the parameters in

Fig.3, the Rabi frequency Ω1 = 6γ = 17.3MHz (intensity
0.1W/cm2) is much larger than the recoil Doppler shift
7.4kHz. The modulation frequency νd = 12γ = 34.5MHz
and the modulation amplitude ∆1,2 should be in the
range 0 ∼ 200MHz. In the µK regime, the thermal
motions induce frequency shifts ∼kHz, which are much
smaller than the effective potential energy ∼MHz. One
can easily trap 106 atoms in 1 mm3 and a Gaussian beam
with 3 mm diameter can be approximated as a plane
wave [62]. The band collapsing can be directly observed
through the absorption spectra.

The applications of SL’s are promising. The transport
of the superradiant excitations in SL’s can be used to
reflect high-frequency light (for example, x-ray or ultra-
violet) with low-frequency light (visible light or infrared)
[63]. The coupling strength between the lattice point is
tunable, which allows us to prepare a superposition of
two timed Dicke states that are far apart in momentum
space for Heisenberg limit metrology [64]. The effective
force in momentum space can break the time-reversal
symmetry and realize optical isolation [65].

In conclusion, we proposed the concept of superradi-
ance lattices based on a standing wave coupled EIT sys-
tem. An effective uniform force in momentum space can
be introduced by the detuning between the two compo-
nents of the standing wave. The Wannier-Stark ladder
and the Bloch band collapsing can be observed from the
absorption spectra of the probe field. The dynamic local-
ization can be observed from the disappearance of diffrac-
tion in an EIG scheme. By introducing more EM modes,
this lattice can be extended to higher dimensions where
many interesting physics can be studied.
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