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Phenomenologically important quantum dissipative processes include black-body friction (an atom
absorbs counterpropagating blue-shifted photons and spontaneously emits them in all directions,
losing kinetic energy) and non-contact van der Waals friction (in the vicinity of a dielectric surface,
the mirror charges of the constituent particles inside the surface experience drag, slowing the atom).
The theoretical predictions for these processes are modified upon a rigorous quantum electrodynamic
(QED) treatment, which shows that the one-loop “correction” yields the dominant contribution to
the off-resonant, gauge-invariant, imaginary part of the atom’s polarizability at room temperature,
for typical atom-surface interactions. The tree-level contribution to the polarizability dominates at
high temperature.

PACS numbers: 31.30.jh, 12.20.Ds, 31.30.J-, 31.15.-p

Introduction.—Can a physical object experience fric-
tion effects, even if it is not in contact with a surface,
i.e., even if the overlap of the wave function of the atom
with the surface is negligible? This question has intrigued
physicists for the last three decades, and the precise func-
tional form of the non-contact friction of an atom-surface
interaction has been discussed controversially in the lit-
erature [1–9]. Intuitively, if an ion moves parallel to
a surface, at a distance a few (hundred) nanomenters,
then it is quite natural to assume that the motion of the
mirror charge inside the material leads to Ohmic heat-
ing and thus, to a commensurate energy loss (friction
force) acting on the atom flying by. The correspond-
ing effect for a neutral atom is less obvious to analyze,
but one may argue that the thermal fluctuations of the
electric dipole moment of the atom may induce corre-
sponding fluctuations of the mirror charge(s) of the con-
stituent particles of the atom inside the material, again
leading to Ohmic heating. The derivation relies heav-
ily on the quantum statistical theory of thermal fluctu-
ations of the electromagnetic field near a surface, and
on the fluctuation-dissipation theorem [5, 10, 11]. For
non-contact friction in the zero-temperature limit, even
the existence of the effect still is subject to scientific
debate [12–15]. Ultimately, non-contact friction effects
limit the extent to which friction forces [16] can be re-
duced in an experiment. These limits are important
for three-dimensional atomic imaging [17], tests of grav-
itational interactions at small length scales [18], limits
of magnetic resonance force microscopy [19], and they
affect the behavior of micro-electro-mechanical systems
(MEMS) at the nanometer scale [20].

Complementing the effect non-contact friction, the
drag exerted by oncoming blue-shifted thermal black-
body radiation on a moving atom has recently been an-
alyzed for nonrelativistic neutral atoms as they travel
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FIG. 1. (Color online.) The Feynman diagram for the ac
Stark shift involves the absorption or emission of two laser
photons by the atom [Fig. (a)]. A tree-level imaginary part
(cut of the diagram, see Fig. (b)] is generated only if the
absorbed laser photon happens to be at resonance with regard
to a transition of the atom to an excited state [see Eq. (12)].

through space [21–24]. Both the blackbody as well as
the non-contact quantum (thermal) friction require as
input the imaginary part of the atom’s polarizability,
whose precise functional form for small driving frequen-
cies is different depending on whether one uses (i) reso-
nant Dirac-δ peaks [21], or the (ii) length-gauge or (iii)
velocity-gauge expressions in the low-frequency limit (see
Chap. XXI of Ref. [25] and Ref. [24]). Any theoretical
prediction crucially depends on a resolution of the “gauge
puzzle”, which is the subject of the current Letter. Quite
surprisingly, a separation of the problem in terms of a rig-
orous quantum electrodynamic approach to the atom [26]
leads to a natural separation of the resonant and the non-
resonant (one-loop) effects. Perhaps even more surpris-
ingly, the one-loop correction here dominates over the
tree-level term, for typical materials and temperatures.
Imaginary Part of the Polarizability.—The calculation

of the imaginary part of the polarizability relies on the
following two observations. (i) One identifies the main
contribution to the imaginary part of the polarizability
with the imaginary part of an energy shift, namely, the
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FIG. 2. (Color online.) The radiative correction to the ac
Stark shift involves an additional virtual photon loop (green).
The imaginary part (cut of the diagram) is generated when
the virtual photon becomes real, i.e., when the laser photon
has the same energy as the spontaneously emitted photon.
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FIG. 3. (Color online.) In velocity gauge, the seagull term
leads to additional diagrams with a two-photon vertex.

ac Stark shift [27]. In second quantization, the ac Stark
shift in a laser field can be formulated in terms of the
virtual transitions of a reference state (atom in the state
|φ0〉, and nL laser photons), to a virtual state with the
atom in the virtual state |φm〉, and nL± 1 laser photons.
(ii) One observes that the imaginary part is generated by
an additional virtual photon loop (self-energy insertion)
which is cut in the middle of the diagram, with a virtual
state that brings the atom back to the reference state
|φ0〉, has nL−1 laser photons (one laser photon has been
absorbed) and one spontaneously emitted photon, with

wave vector ~k, polarization λ, and an energy ω~kλ
= ωL.

The Feynman diagram for the ac Stark shift is given
in Fig. 1. The reference state is |φ0〉 = |φ, nL, 0〉, with
the atom in the state |φ〉, nL laser photons and zero
photons in other modes. The energy eigenvalue of the
unperturbed reference state is HQ |φ0〉 = E0 |φ0〉, with
E0 = E + ~nL ωL, where HQ is the sum of the atomic
(A) and the electromagnetic (EM) field Hamiltonians,

HQ = HA + HEM , HA =
∑

m

Em |φm〉 〈φm| , (1a)

HEM =
∑

~k λ6=L

~ω~k λ
a+
~k λ

a~k λ
+ ~ωL a+L aL , (1b)

where L denotes the laser mode, and the photon cre-
ation and annihilation operators are a+ and a, respec-
tively [28, 29]. If the laser photon of angular frequency
ωL is resonant with respect to an atomic transition, then
the absorption of a laser photon may deplete the ref-

erence state, leading to a transition to a state |φr〉 =
|φm, nL − 1, 0〉, provided ~ωL = Em − E, where E is
the atomic reference state energy. However, when the
absorption of a laser photon is accompanied by the spon-
taneous emission of another photon, then a transition to
a final state |φf 〉 = |φ, nL − 1, 1~k λ

〉 becomes possible,
where the laser fields retains nL − 1 photons, while one
photon is emitted into the mode ~k λ (the state is |1~k λ

〉
in the occupation number notation). The imaginary part
of the ac Stark shift due to the diagrams in Fig. 2 is due
to the dipole interaction HL (z-polarized laser) and the
interaction Hamiltonian HI (other field modes),

~EL = êz

√

~ωL

2ǫ0VL

(

aL + a+L
)

= êz EL , (2a)

~E =
∑

~k λ

√

~ω~k λ

2ǫ0V
ǫ̂~k λ

(

a~k λ
+ a+~k λ

)

, (2b)

HL = − e z EL , HI = −e~r · ~E . (2c)

Here, the normalization volumes are V for the quantized
field, and VL for the laser field. We can write

IL =
nL ~ωL c

VL

,
∑

~k

= V

∫

d3k

(2π)3
, (3)

for the laser field intensity IL and the matching of the
sum over available photon modes

∑

~k
to the integral

∫

d3k over the continuum. Second-order perturbation
theory for the reference state |φ0〉 leads to [27]

δE(2) = − 〈HLG′(E0)HL〉 = −
IL

2ǫ0 c
α(ωL) , (4a)

α(ωL) = e2
∑

±

〈φ |z GA(E ± ωL) z|φ〉

=
e2

3

∑

±

〈

φ
∣

∣xi GA(E ± ωL)xi
∣

∣φ
〉

, (4b)

where G′(z) = [1/(HQ − z)]′ is the reduced Green func-
tion for atom+field (with the reference state |φ0〉 ex-
cluded), while GA(z) = [1/(HA − z − i ǫ)] is the atomic
Green function. The “reduction” of the Green function
excludes the combined atom+field state |φ0〉 but not the
atomic reference state |φ〉. We assume that the atom’s
reference state is spherically symmetric. The fourth-
order energy shift leads to the diagrams shown in Fig. 2,

δE(4) = −〈HI G
′(E0)HLG′(E0)HLG′(E0)HI〉

− 〈HL G′(E0)HI G
′(E0)HI G

′(E0)HL〉

− 2 〈HI G
′(E0)HL G′(E0)HI G

′(E0)HL〉 , (5)

The three terms in Eq. (5) correspond to the diagrams
in Fig. 2(a), (b), (c), respectively. Let us consider the
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energy shift due to the diagram in Fig. 2(a),

δEa = − e4
∑

~k λ

~ωL

2ǫ0VL

~ω~k λ

2ǫ0V

〈

φ0

∣

∣

∣
(ǫ̂~k λ

· ~r)
(

a+~k λ
+ a~k λ

)

× G′(E0) z (a+L + aL) G′(E0) z (a+L + aL)

× G′(E0) (ǫ̂~k λ
· ~r)

(

a+~k λ
+ a~k λ

) ∣

∣

∣
φ0

〉

. (6)

In order to calculate the imaginary part, one isolates the
terms which correspond to the absorption from the laser
field and emission into the spontaneous mode. Using the
matching condition (3) and summing over the polariza-
tions of the spontaneously emitted photon, one obtains

δEa ∼ − e4
∫

d3k

(2π)3
IL

2ǫ0c

~ω~k λ

2ǫ0

(

δij −
ki kj

~k 2

)

×
〈

φ
∣

∣z GA(E − ω~k λ
)xi GA(E + ωL − ω~k λ

)

×xj GA(E − ω~k λ
) z

∣

∣φ
〉

. (7)

The imaginary part due to the transition into the state
|φf 〉 can be extracted from the relation 1/(x − iǫ) →
(P.V.)(1/x) + iπ δ(x), i.e., by projecting

GA(E + ωL − ω~k λ
) →

iπ

~
δ(ω~k λ

− ωL) |φ〉 〈φ| . (8)

One finally obtains

Im(δEa) = −
IL

2ǫ0c

ω3
L

6πǫ0c3

[

e2

3

〈

φ
∣

∣xiGA(E − ωL)xi
∣

∣φ
〉

]2

(9)
and after summing up the diagrams in Fig. 2(a), (b)
and (c), the result is

Im(δE(4)) = −
IL

2ǫ0c

ω3
L

6πǫ0c3

[

e2

3

〈

φ
∣

∣xiGA(E − ωL)xi
∣

∣φ
〉

+
e2

3

〈

φ
∣

∣xjGA(E + ωL)xj
∣

∣φ
〉

]2

, (10)

so that Im(δE(4)) = − IL
2ǫ0c

ω3

L

6πǫ0c3
[α(ωL)]

2
. Matching

with the second-order ac Stark shift given in Eq. (4), and
adding the resonant contribution [Fig. 1(b)], one obtains

Im[α(ωL)] = Im[αR(ωL)] +
ω3
L

6πǫ0c3
[α(ωL)]2 . (11)

Here,

Im [αR(ωL)] =
π

2

∑

m

fm0

Em − E
δ(Em − E + ~ωL) (12)

is the resonant contribution. The dipole oscillator
strength fm0 reads as fm0 = 2

3 e
2 (Em − E) |〈φ|xi|φm〉|2

(see Ref. [30]). The result (11) allows us to unify the for-
mulas given in Eqs. (G2) and (G3) of Ref. [31], Eq. (49)
of Ref. [32] and Eq. (15.83) of [33], into a single, compact

result. Namely, the appearance of the square of the po-
larizability is otherwise ascribed to a radiative reaction
force [31, 32], but finds a natural interpretation within
a quantum electrodynamic (QED) formalism. The reso-
nant contribution is the tree-level term in QED.

In velocity gauge, one replaces for the dipole coupling
−e~r · ~E by −e ~p · ~A/me, where me is the electron mass.
From the diagrams in Fig. 2, one then obtains the en-
ergy shift given in Eq. (10), but with the replacement
ω3
L → ωL in the prefactor, and xi → pi/me in the dipole

matrix elements. The resulting expression is not iden-
tical to the length-gauge result (11) but there are ad-
ditional diagrams to consider, given in Fig. 3, which in-
volve the seagull Hamiltonian, proportional to the square
of the vector potential. Using the commutator relation
pi = ime [H −E + ωL, r

i] repeatedly, one can show that
the additional terms from the diagrams in Fig. 3 restore
the full gauge invariance of the result (11).
Numerical Evaluation.—We are concerned with the

numerical evaluation of the blackbody friction integral
(restoring SI mksA units)

ηBB =
β~2

12π2 ǫ0 c5

∞
∫

0

dω ω5 Im[α(ω)]

sinh2(12β~ω)
, (13)

which determines the blackbody radiation force F =
−η v, and the non-contact friction integral (in SI mksA)

ηQF =
3β~2

32π2ǫ0Z5

∞
∫

0

dω Im[α(ω)]

sinh2(12β~ω)
Im

[

ǫ(ω) − 1

ǫ(ω) + 1

]

, (14)

for interactions with a dielectric. Here, β = 1/(kB T ) is
the Boltzmann factor, Z is the distance to the wall, and
ǫ0 is the vacuum permittivity.

For low temperatures (β → ∞), only small frequencies
contribute to the friction forces and the imaginary part
of the polarizability can be approximated as Im[α(ω)] ≈
ω3[α(0)]2/(6πǫ0c

3) Here, α(0) is the static polarizability
of the atom, i.e., the low-frequency limit, where the res-
onant contribution in Eq. (11) can be neglected. Thus,
the blackbody friction coefficient goes as T 8 for small
temperatures,

ηBB ≈
32 π5 α(0)|2SI
135 ~7 ǫ20 c

8 β8
=

512 π7 α(0)|2a.u.
135α6 ~m6

e c
14 β8

. (15)

The subscript of the static polarizability indicates
the system of units. In atomic units, the subscript
a.u. indicates the reduced quantity, i.e., the “numerical
value” [26, 34]. The polarizability is normally given in
atomic units in the literature [35–37]. Assuming that
Im [(ǫ(ω) − 1)/(ǫ(ω) + 1)] ∼ ω/Ω0 for ω → 0, where Ω0

is a characteristic frequency of the material, the van der
Waals friction coefficient reads as

ηQF ≈
π α(0)|

2
SI

60 ~3 ǫ20 c
3 Ω0 Z5 β4

=
4 π3

~
3 α(0)|

2
a.u.

15α6 m6
e c

9 Ω0 Z5 β4

(16)
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FIG. 4. (Color online.) Theoretical predictions [Figs. (a)–(c)] for the attenuation time τBB (equal to the ratio of atomic mass
to ηBB) are displayed for blackbody radiation friction. For CaF2 van der Waals friction [see Figs. (d)–(f)], the coefficient γ0 is
defined in Eq. (17). The dashed lines in Figs. (a)–(c), and (f), are obtained with the tree-level term given in Eq. (12).

and thus is proportional to T 4 for low temperatures.
For blackbody friction [Figs. 4(a)–(c)], numerical results
are given in terms of the temperature-dependent atten-
uation time τBB = mA/ηBB, where mA is the mass
of the atom (hydrogen or helium). The results for
τBB are free from gauge ambiguities (cf. Figs. 2–4 of
Ref. [24]). We also consider the CaF2 van der Waals
friction (for the temperature-dependent dielectric func-
tion, see Refs. [38, 39]). The numerical results can con-
veniently be expressed in terms of the damping constant
γ0, where

dv

dt
=

ηQF

mA

v ,
ηQF

mA

= γ0

(a0
Z

)5

, (17)

and a0 is the Bohr radius. A reference value at
room temperature for metastable helium reads as

γ
(He,23S)
0 (298 K) = 101.6 s−1, which is exclusively due

to the one-loop contribution [second term in Eq. (11)].
The tree-level term given in Eq. (12) contributes 1.82 ×
10−5 s−1 to γ0 in the mentioned example.
Conclusions.—The imaginary part of the atomic polar-

izability can be formulated as the sum of a resonant tree-
level, and a non-resonant one-loop contribution, which
behaves as ω3 for small frequencies [see Eq. (11)]. This
result holds for many-electron atoms; for transparency,
the dipole coupling in the derivation outlined here is for-
mulated for a single active electron. The one-loop domi-
nance inverts the perturbative hierarchy of quantum elec-

trodynamics. (The fine-structure constant, which is the
perturbative coupling parameter of QED, remains ”hid-
den” in the square of the dynamic dipole polarizabil-
ity, which is itself proportional to e2 = 4π~ǫ0α.) The
one-loop dominance is tied to the regime of low driving
frequencies (on the scale of typical atomic transitions),
which are commensurate with thermal photons at typical
experimental conditions. It is surprising for a field theory
with a small coupling parameter α ≈ 1/137.036 ≪ 1.

Gauge-invariant results are calculated for the black-
body friction, and for CaF2 van der Waals friction, for
ground and selected excited states of hydrogen and he-
lium (Fig. 4). These may be checked against future ex-
perimental results. The low-temperature limit of the
blackbody and non-contact van der Waals friction is eval-
uated analytically in Eqs. (15) and (16). In this limit, the
coefficients are proportional to the square of the static po-
larizability, and the friction coefficients are orders of mag-
nitude larger for metastable 23S1 helium than ground-
state helium. Our results finally clarify the gauge invari-
ance of the imaginary part of the polarizability [25, 40].
The gauge-invariant formulation using asymptotic states
confirms that the susceptibility of the atom, for small fre-
quencies, is consistent with the length-gauge expression
from Ref. [24] and Chap. XXI of Ref. [25].
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