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Recent theoretical progress has explained the physics of knotting of semiflexible polymers, yet
knotting of flexible polymers is relatively unexplored. We herein develop a new theory for the size
distribution of knots on a flexible polymer and the existence of metastable knots. We show the free
energy of a flexible molecule in a tube can be mapped to quantitatively reproduce the free energy
distribution of a knot on a flexible chain. The size distribution of knots on flexible chains is expected
to be universal and might be observed at a macroscopic scale, such as a string of hard balls.

Long polymer molecules can find themselves in knotted
conformations, akin to those seen in jumbled strings[1] or
agitated chains[2–4], and these knots become increasingly
likely as the length of the polymer is increased [5]. Knot-
ted conformations are frequently found in polymers in
poor solvents[6] or confined within small volumes, such
as a viral capsid[7, 8], and a number of knotted protein
conformations have been discovered [9–11]. To study the
properties of knots on polymers more closely, knots have
been tied on actin filaments [12] and DNA molecules [13]
with optical tweezers, and knots have been generated on
DNA in microfluidic devices through collisions with de-
fects [14] or the application of electric fields [15]. Simple
knots can influence dynamic polymer processes such as
breaking a strand [16], rheological response [17], translo-
cation of a protein [18, 19] or DNA [20] through a pore,
or the ejection of DNA from a viral capsid [21]. The
specific topology of a knot can also alter rates of ejec-
tion from the viral capsid [22] and untying in electric
fields [23, 24]. Composite knots have been shown to ex-
hibit complex dynamics [25]. Recently, researchers have
shown how to generate knots of selected topologies in
polymers via chemical synthesis pathways [26, 27] and
self-assembly [28].

These developments have motivated fundamental
study of knots on polymers. The knotting probability
and the size distribution of knots have been investigated
for chains under various conditions [29–35]. An intriguing
finding from simulations is that the cores of knots often
localize to small portions of semiflexible [36] or flexible
chain [6, 37–40] (Fig. 1(a)). Grosberg and Rabin posited
a theory that predicts a metastable knot size for thin
semiflexible polymers, such as double-stranded DNA [41].
The Grosberg-Rabin (GR) theory considers the bend-
ing and confining energies within the knot, which tend
to swell and shrink the knot, respectively, leading to a
metastable size. We extended the GR theory to incorpo-
rate the effect of a finite chain width and demonstrated
quantitative agreement between these theories and sim-
ulation results [36]. These theories, however, cannot ad-
dress knotting in flexible chains, such as single-stranded
DNA and most common synthetic polymers, yet recent
simulations observed a metastable knot size in these flex-

FIG. 1. (Color online) (a) A trefoil knot in a flexible chain.
The monomers in the knotted region (red) are confined in a
virtual tube (grey). (b) A flexible chain confined in a tube.
The open circles correspond to blobs of size Deff = D − a.

ible molecules [40].

In this Letter, we present a new theory that predicts
a metastable knot size for flexible polymers. We show
results of simulations of trefoil knots in long, flexible
polymer molecules exhibits a metastable knot size. We
develop a theory that considers a flexible knot to be ef-
fectively confined in a virtual tube, and we perform sim-
ulations to understand the free energy of confinement of
flexible chains in tubes. Finally, we show the simulations
of flexible chains in tubes can be directly mapped to the
free energies of knots by the choice of two reasonable fit-
ting parameters.

We performed Monte Carlo simulation of flexible
chains and analyzed conformations of the trefoil knot. In
our simulations, the flexible chain is modeled as a string
of hardcore beads, each with diameter a. In each Monte
Carlo cycle, either a crankshaft or reptation move is per-
formed, described in Ref. [42]. The algorithm of calcu-
lating knot sizes has been presented in our previous pub-
lication [36] and is briefly recapitulated here. We used
the minimally interfering closure scheme [43] to gener-
ate closed configurations of the chain, and we calculated
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the Alexander polynomial, ∆(t), [44] of this closed loop.
We identified the knotted subregion by successively cut-
ting segments from ends of the chain, generating a new
closure, and recalculating ∆(t) until detecting a change
in ∆(t). The knot size, Lknot, is defined as the contour
length inside the knotted subregion.
The probability of forming a trefoil knot of a cer-

tain size, Lknot, is shown in Fig. 2(a) for simulations
of 2000 and 1000 monomers. The probability fknot(x)

is normalized such that
∫ +∞

0
fknot(x)dx = ftotal, where

x = Lknot/a and ftotal ≈ 0.00226 or 0.00094 is the to-
tal probability of trefoil knot for simulations of 2000 or
1000 monomers, respectively. In agreement with a pre-
vious study [40], fknot is maximized at a critical knot
size L∗

knot = (140± 20)a, corresponding to a metastable
knot. The values of fknot for L = 1000 are approximately
half that of L = 2000 over the range Lknot ≤ 700, which
suggests the metastable knots are insensitive the contour
length; a similar result was obtained in a previous study
[40]. The values of fknot are converted to the free energy
by

Fknot = −log(fknot). (1)

In Eq. 1 and throughout this Letter, all free energies,
Fi, are made dimensionless by kBT . Figure 2(b) shows
the free energy as a function of Lknot after shifting the
minimum to zero. The trefoil knot attains a minimum
free energy at L∗

knot ≈ 140a. A well depth of ∼ 1kBT
spans from 50 < Lknot/a < 700, diverging sharply for
smaller knots and rising gradually for larger knots.
We will now focus on the physics governing the distri-

bution of knot sizes on flexible polymer molecules. We
show that using a renormalized free energy of a flexible
chain confined in a hard tube, the distribution of sizes of
trefoil knots can be quantitatively captured, as indicated
by the agreement between the blue line (free energy of
flexible chains in hard tubes) and black and red circles
(free energies of knots) in Fig. 2b. For the remainder of
this Letter, we will explain the physics behind the con-
finement of a flexible chain in a tube and how this leads
to a metastable knot on a flexible chain.
For semiflexible chains, Grosberg and Rabin [41] en-

visioned the monomers in the knotted region to be con-
fined in a virtual tube, depicted in Fig. 1(b). The self-
confinement free energy in knots Fknot can be mapped
to the confinement free energy of a chain confined in
a straight tube Ftube, a more tractable problem. The
virtual tube can be imaged as the state of a maximally
inflated knot, and so the characteristic ratio,

p ≡ Ltube/D, (2)

only depends on the topology of the knot[45]. Here, D
and Ltube denote the diameter and length of the tube,
respectively. This definition allows the problem of min-
imizing Fknot with respect to the knot size Lknot to be
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FIG. 2. (Color online) (a) Probability of forming a trefoil
knot of a certain size for chains of L = 2000 and L = 1000
monomers. The probabilities for L = 1000 are scaled by a
factor of 2. (b) Free energies as a function of knot size from
computer simulations (circles). The blue line is the rescaled
free energy of a flexible polymer in a straight tube, using Eqs.
7, 8, and data in Fig. 3c.

solved via the ansatz of minimizing Ftube with respect to
D under the condition Ltube = pD.
We turn to the chains confined in straight tubes (Fig.

1(b)). The confinement free energy can be written as

Ftube = FmNm, (3)

where Fm is the confinement free energy per monomer,
and Nm = Lknot/a is the number of confined monomers.
Using the definition of the relative extension, r, of the
chain in a tube,

r ≡ Ltube/(Nma), (4)

the number of confined monomers can be written as
Nm = pD/(ra). Recall that Ltube in Eq. (4) equals the
extension of confined chain. In our theory and simula-
tions, the effective tube diameter,

Deff ≡ D − a, (5)

is more relevant than D because the centers of monomers
are confined in a tube of diameter Deff rather than D.
Using Eq. (5), we modify Eq. (3) to

Ftube = pFm/r × (Deff/a+ 1), (6)

The above equation indicates that Ftube/p only de-
pends on Deff because Fm and r depend solely on
Deff/a. To numerically obtain Fm(Deff ) and r(Deff ),
we performed additional simulations of confined flexible



3

10
−2

10
−1

10
0

10
1

F
m

  (
k B

T
) (a)

simulation

Eq (13)

y = 6.1 x−1.7018

10
−1

10
0

r simulation
Eq (14)
y = 1.22 x−0.7018

(b)

4

6

8

D
eff

 / a

F
tu

be
 / 

p 
(k

B
T

)

simulation
Eqs (10)&(16)

(c)

10
−1

10
0

10
1

0

2

4

6

D
eff

 / a

F
bl

ob
 (

k B
T

) simulation
Eq (15)
Eq (12)
Eq (16)

(d)

FIG. 3. (Color online) (a) The confinement free energy per
monomer as a function of the effective tube diameter. (b) The
relative extension as a function of the effective tube diameter.
(c) The total confinement free energy divided by p as a func-
tion of the effective tube diameter. (d) The confinement free
energy per blob as a function of the effective tube diameter.
The red lines are based on the scalings predicted by the blob
model [46, 47] and the Flory exponent ν = 0.5876 [48]. The
prefactors are the best fit values.

chains containing 1000 monomers. The relative extension
r(Deff ) was obtained using typical Monte Carlo simu-
lations as described above. The confinement free ener-
gies, Fm, were obtained by Pruned-Enriched Rosenbluth
Method (PERM) simulations [49]. The details of the
PERM algorithm were presented in our previous publi-
cation [50].
Figures 3(a) and (b) show Fm and r as a function of

Deff , calculated from simulation results. From these re-
sults, Eq. (6) was used to calculate Ftube/p as a function
of Deff , shown in Fig. 3(c). In qualitative agreement
with the observed metastable knot sizes in Fig. 2, a local
minimum exists at D∗

eff = 3.0a. The excellent agree-
ment between theory and simulation shown in Fig. 2b
was achieved by a mapping of the results in Fig. 3, de-
scribed as follows. The relationship between Deff and
Lknot is

Lknot = p(Deff + a)/r. (7)

A value of p = 17.9 was used in order to match the mini-

mum location D∗

eff = 3.0a in Fig. 3(c) and the minimum
location L∗

knot = 140a in Fig. 2(b). This value of p is close
to the a similarly fit value of p = 16 for the semiflexible
chains [36], and the ideal value 12.4 for the maximally
inflated trefoil knot [45]. We rescaled the free energy of
confinement by a factor of

α = Fknot/Ftube. (8)

The fitted value of α = 0.19 < 1 corrects for the fact
that the virtual tube of the knot has soft (rather than
hard) walls. With these two parameters, the numerical
values from simulations of a flexible chain confined to a
hard tube are mapped onto the free energy of trefoil (31)
knots (blue curve, Fig. 2). Similar results for 41 knots are
shown in Supplemental Material. These results strongly
suggest that the physics of knotted region of a flexible
chain are that of self-confinement, similar to the physics
in semiflexible chains[36].
While the above analysis paints a compelling picture,

why the local minimum of Ftube with respect to Deff

exists is not obvious and merits further discussion. We
write Ftube as

Ftube = NblobFblob, (9)

where Fblob is the confinement free energy within a blob of
size Deff (Fig. 1(b)). Note that the “blob” in this Letter
simply corresponds to the subchain within a sphere of
diameter Deff . Considering that the tube length is pD
and the extension of each blob is Deff , the number of
blobs is

Nblob = p(1 + a/Deff ). (10)

It is easy to see that Nblob → p as Deff → ∞, and
Nblob → ∞ as Deff → 0. Figure 3(d) shows Fblob versus
Deff calculated from Fm and r in Fig. 3(a) and (b) using

Fblob = FmDeff/(ra). (11)

In weak confinement, Deff ≫ a, the classic blob model
[46, 47] predicts the confinement free energy per blob is
independent of blob size:

Fblob = c1, (12)

where c1 is determined to be 5.0kBT in Fig. 3(d).
In strong confinement, Deff ≪ a, we can derive the

expressions of Fm and r as follows. In the absence of con-
finement and the excluded volume (EV) interactions, the
allowed region for the vector connecting two monomers
is a sphere with surface area 4πa2. Considering the EV
of three adjacent monomers, the allowed space becomes
3πa2. In a tube, the allowed region for the vector con-
necting two monomers corresponds to the cross-section
of the tube, and the area is π(Deff/2)

2. The entropy
loss per monomer is

Fm = −log[D2
eff/(12a

2)]. (13)
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FIG. 4. Orientation correlation as a function of monomer
separation for a flexible chain in bulk (L = 1000).

The average angle between the tube axis and the vec-
tor connecting two monomers is asin(Deff/(2a)) ≈
Deff/(2a). Then, the average extension of each
monomer along the tube axis is

r = cos[Deff/(2a)]. (14)

Using Eq. (13) and Eq. (14), the confinement free energy
per blob in the strong confinement is

Fblob = −(Deff/a)log[D
2
eff/(12a

2)]/cos[Deff/(2a)].
(15)

Equation (15) indicates that Fblob = 0 whenDeff/a = 0,
agreeing with the simulation results in Fig. 3(d).
We have obtained agreement between theory and sim-

ulations for Fblob in weak and strong confinements, which
are observed to be applicable for Deff ≥ 20a and
Deff ≤ 0.2a, respectively. The critical tube diameter,
D∗

eff ≈ 3.0a, which corresponds to the metastable knot
size, is located in the transition regime between these two
extreme cases. At the critical tube diameter, r = 0.51
and Fm = 0.60 kBT . We propose an empirical expression
for Fblob in the transition regime

Fblob = 5.0− 2.57exp(−0.18Deff/a), (16)

which agrees with the simulation results for Deff ≥ 2a
(Fig. 3(d)). By using Eqs. (16) and (10) with Eq. (9),
we are able to reproduce the free energy landscape for
Deff ≥ 2a, which covers the local minimum.
In order to understand why Fblob decreases monotoni-

cally as the blob size decreases in the transition regime,
we analyzed the orientation correlation 〈ui · uj〉 as a
function of the separation, s = |j − i|, between pairs
of bond unit vectors, ui and uj , in bulk, shown in Fig.
4. Here, the brackets indicate averaging over all i, j, and
molecules. The positive correlation indicates the rela-
tive orientation between two adjacent blobs (sub-chains)
is not completely random in bulk. This correlation is
due to EV interactions which disfavor backfolding of the
chain. Hence, the positive correlation reduces the free

energy cost of aligning blobs, reducing Fblob. Such a cor-
relation explains why Fblob is smaller than the asymptotic
value c1 in the transition regime. Note that for the criti-
cal tube diameter Deff = 3.0a, the number of monomers
in the blob is approximately 6. The correlation for s = 6
in bulk is 0.07.

With the theory for knots sizes in flexible chains now
established, we will compare it to the GR theory for semi-
flexible chains. For semiflexible chains, the metastable
knot size is set by the bending energy, which scales as
Fbend ∼ L−1

knot, and the confinement free energy, which

scales as Fconfine ∼ L
1/3
knot. It is apparent that the com-

petition between these terms can lead to a minimum of
free energy. Note that the GR theory for semiflexible
chains predicts shrinking forces exist only for sufficiently
tight knots but not for looser knots in semiflexible chains
[36] or knots in flexible chains. For flexible chains, there
is no bending energy Fbend. In this case, the minimum of
Fconfine cannot be intuited from its asymptotic behav-
ior: (i)Fconfine → ∞ as Lknot → 0, (ii) Fconfine → pc1
as Lknot → ∞. A minimum of Fconfine, however, is re-
vealed in the simulation results in the transition regime.
If we examine what happens when EV interactions are
ignored, the confinement free energies Fconfine of flex-
ible and semiflexible chains become similar. For flexi-
ble chains in the absence of EV, we have Deff = D,
and Fconfine = pFblob should decrease towards zero for
Lknot → 0, as seen in semiflexible chains. This effect
serves to tighten a knot as much as possible. For simula-
tions of trefoil knots on fully flexible chains without EV,
Katrich et al. [37] found a most probable size of 7 seg-
ments, and our simulations (see Supplemental Material)
find a value of 6 segments. Both values are remarkably
close to 5 segments, the minimum number required to
form a trefoil knot. The larger knots observed in simu-
lations may arise from the high curvature in the virtual
tube (vs. the straight tube in theory).

Our results imply that once a knot is formed on a
long flexible chain, the knot will diffuse along the chain
with its size fluctuating around L∗

knot for a certain pe-
riod before escaping the potential well or it is untied at
the chain ends (see Supplemental Material). This be-
havior has been observed in previous simulations [40].
More broadly, a knot can be considered as a number of
self-entanglements of a chain, sharing similarities with
entanglements in multi-chain systems. The effective po-
tentials induced by the virtual tubes of knots are similar
to those induced by entanglements in multi-chain sys-
tems [36, 51]. However, the inter-chain entanglements
are more abundant than self-entanglements in entangled
polymer melts [52, 53].

We have developed a simple theory to explain the ori-
gins of metastable knots on flexible polymer molecules.
These knots localize due to two competing effects:
shrinking to reduce the number of monomers in the con-
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fined, knotted region and swelling to reduce the effec-
tive confinement free energy for each of these monomers.
For trefoil knots, the metastable state contains 140± 20
monomers, and these monomers can be imaged to be
confined in a virtual tube of diameter 4.0a and length
71.7a. Looking forward, the equilibrium distribution of
knot size around the metastable knot size is expected to
be universal and may be also applied to agitated macro-
scopic strings [1–4]. However, experiments of knots on
macroscopic chains are typically on planes [2, 4], while
our simulation and theory are for 3D chains.
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[52] E. Panagiotou, M. Kröger, and K. Millett, Phys. Rev. E

88, 062604 (2013).
[53] S. K. Sukumaran, G. S. Grest, K. Kremer, and R. Ever-

aers, J. Polym. Sci., Part B: Polym. Phys. 43, 917 (2005).


