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An autonomous oscillator synchronizes to an external harmonic force only when the forcing fre-
quency lies within a certain interval - known as the synchronization range - around the oscillator’s
natural frequency. Under ordinary conditions, the width of the synchronization range decreases
when the oscillation amplitude grows, which constrains synchronized motion of micro- and nanome-
chanical resonators to narrow frequency and amplitude bounds. Here, we show that nonlinearity
in the oscillator can be exploited to manifest a regime where the synchronization range increases

with increasing oscillation amplitude. Experimental data is provided for self-sustained microme-
chanical oscillators operating in this regime, and analytical results show that nonlinearities are the
key determinants of this effect. Our results provide a new strategy to enhance synchronization of
micromechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

PACS numbers: 07.10.Cm Micromechanical devices and systems, 05.45.Xt Synchronization; coupled oscilla-

tors, 05.45.-a Nonlinear dynamics and chaos

Electronic components designed for time keeping and
event synchronization use frequency references which,
traditionally, are provided by vibrating quartz crystals.
Device miniaturization, however, makes it necessary to
envision the replacement of quartz crystals with sim-
pler, fast responding, low power-consuming elements that
would be readily integrable to electronic circuits dur-
ing fabrication. Because of their inherent compatibility
with semiconductor technology, micromechanical oscilla-
tors are an attractive option fulfilling such requirements
[1–3]. Operating at the microscale, the dynamics of these
vibrating structures is often nonlinear [4, 5], with large
oscillation amplitudes exciting higher-order harmonics in
the oscillatory motion. It is therefore of critical impor-
tance for functional design to characterize the effect of
such nonlinearities, in particular, on the oscillator’s ca-
pability to synchronize with external signals. In this Let-
ter, we show that, under suitable conditions, nonlineari-
ties can, in fact, improve the synchronization properties
of micromechanical oscillators.

Synchronized motion of an autonomous oscillator, with
the same frequency as an externally applied harmonic
perturbation, is arguably the most basic form of coherent
response of a physical system to an external action. Gen-
erally, synchronization is possible when the frequency of
the external perturbation Ωs lies close enough to the os-
cillator’s frequency Ω0, such that |Ωs −Ω0| < ∆Ω where
2∆Ω is the synchronization range. Intuitively, it is ob-
served that the synchronization range increases as the in-
tensity of the harmonic perturbation is increased [7], i.e.
the larger the interaction with the external perturbation,
the further the frequency can be shifted. It is also usu-
ally observed that the width of the synchronization range
decreases with increasing oscillator amplitude, i.e. as the
self-sustained drive force of the primary oscillator is in-

creased, the ability to change the frequency of operation
through synchronization to an external harmonic pertur-
bation decreases. Here we show that, contrary to an oscil-
lator operating in the linear regime, for a self-sustained
mechanical oscillator driven into the nonlinear regime,
synchronization by an external force is enhanced as the
amplitude of its self-sustained oscillations increases. We
demonstrate this counterintuitive effect experimentally,
through the use of an electrically driven micromechan-
ical oscillator in a closed-loop configuration and an ex-
ternal oscillator with a tunable frequency. A theoretical
model reveals that the enhancement of synchronizability
is a direct consequence of nonlinearities.

A schematic of the circuit used to drive the microme-
chanical oscillator is shown in Fig. 1a, where a closed
feedback circuit compensates for intrinsic damping to
maintain self-sustained oscillations [8]. The microme-
chanical oscillator used for these measurements is a sili-
con structure composed of three interconnected parallel
beams, 500 µm long, clamped at their two ends [9]; as
we will show below, this resonator can be driven deep
into the nonlinear regime. In its principal oscillation
mode, transverse displacement is detected capacitively
by means of a comb-drive electrode. After amplifica-
tion, the resulting signal is conditioned by shifting its
phase by a prescribed amount φ0 and fixing its am-
plitude V0. The conditioned signal is then reinjected
through another comb-drive electrode as a driving ca-
pacitive force which is time-varying and proportional to
VDCV (t) (where VDC ≈ 5 V ≫ V (t)); therefore, ap-
plied forces F (t) are proportional to the applied drive
voltages V (t). In the absence of any other force, this
closed loop sustains the beam’s vibration at an ampli-
tude A0 and a frequency Ω0 determined by its mechan-
ical properties, the phase shift φ0, and the voltage V0.
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FIG. 1: (Color online). Nonlinear MEMS device. (a)
Schematic of the experimental setup. The closed-loop cir-
cuit, which amplifies and conditions the displacement sig-
nal read from the oscillator, maintains the system in self-
sustained oscillation. An external synchronization signal is
also fed to the oscillator. The scanning electron microscope
image shows the clamped-clamped oscillator. (b) Measured
frequency of the oscillator versus applied self-sustained drive
voltage V0 and no synchronization drive (Vs = 0); blue curve
shows the fit to Eq. (3) for V0 ≤ 100 mV. Inset shows a
least-squares Lorentzian fit to the amplitude squared of a fre-
quency sweep under weak excitation (V = 110 µV), revealing
Q & 20,000 [6].

The amplitude grows with V0 and, as in other resonating
mechanical systems, attains a maximum when the driv-
ing force is in-phase with the oscillation velocity. This
resonance condition is achieved in the phase shifter by
advancing the oscillating signal by φ0 = π/2. Due to the
hardening nonlinearity in the dynamics of the oscillator
(see below), the frequency of self-sustained oscillations,
Ω0, increases as V0 increases. External perturbation –
aimed to entrain the oscillator into synchronized motion
– consists of a voltage signal of amplitude Vs and fre-
quency Ωs, which is added to the self-sustaining signal.
The oscillation frequency of the micromechanical oscilla-
tor is measured on the conditioned signal at the exit of
its amplitude control (see Fig. 1a).

The motion of the principal oscillation mode is well
described by Newton’s equation for a normal coordinate

x(t) (representing displacement from equilibrium) with a
cubic nonlinear term – namely, Duffing’s equation [10] :

mẍ+ γẋ+ kx+ k3x
3 = F0 cos(φ+ φ0) +Fs cosΩst, (1)

where m, γ, k, k3, F0, and Fs are the effective mass,
damping coefficient, elastic constant, cubic-force coeffi-
cient, self-sustaining force and external perturbation, re-
spectively. The external perturbation used for synchro-
nization enters the equation of motion as an external
forcing term. Normalizing by the spring constant k and
choosing time units such that the natural frequency of
the principal mode equals unity (t

√

k/m → t), the equa-
tion of motion reads

ẍ+Q−1ẋ+ x+ βx3 = f0 cos(φ+ φ0) + fs cosΩ
′

st, (2)

where Q =
√
km/γ is the quality factor, β = k3/k,

f0 = F0/k, fs = Fs/k, and Ω′

s = Ωs/
√

k/m. The
cubic-term coefficient β is positive (negative) for harden-
ing (softening) nonlinearities. The amplitude f0 and (ad-
vanced) phase shift φ0 of the self-sustaining force deter-
mine the conditioning of the feedback signal. We focus on
the case φ0 = π/2, where the effect of the self-sustaining
force is maximal. The angle φ(t) is the instantaneous
oscillation phase of the coordinate x(t). The synchro-
nization force fs is applied with a tunable frequency Ω′

s.
Analytical and numerical methods to treat Eq. (2) when
β = 0 have been discussed elsewhere [11]. When β 6= 0,
the cubic term is handled using the standard treatment
of weak nonlinearities [7], by neglecting higher-harmonic
contributions. In the measurement, the force amplitudes
f0 and fs are proportional to the voltages V0 and Vs,
respectively.
With no applied synchronization force (fs = 0), we

take x(t) = A0 cosφ = A0 cosΩ
′

0
t and find that the sys-

tem attains oscillations whose frequency Ω′

0
and ampli-

tude A0 (see Supplemental Information) can be given ex-
plicit expressions:

Ω′

0
=

1√
2

[

1 + (1 + 3βQ2f2

0
)1/2

]1/2

, A0 = Qf0/Ω
′

0
. (3)

As seen in Fig. 1b, our resonator, which is character-
ized by a Q & 20,000 [6] at low amplitude (inset), is
well described by Eq. (3) for driving voltages V0 .
100 mV. Noting that f0 ∝ V0, we fold the oscillator’s
mechanical parameters into a parameter α by defining
αV0 = |β|1/2Qf0; the fit for V0 ≤ 100 mV in Fig. 1b
reveals α = 3.1 ± 0.1 V−1 and the natural frequency
√

k/m = 2π × 67.22 kHz. Note that the self-sustained
frequency is only significantly different from the natural
frequency for |β|f2

0
& Q−2; this occurs deep in the non-

linear regime when the magnitude of the nonlinear term
(∼ |β|A3

0
) becomes comparable to or larger than the lin-

ear term (∼ A0).
Under the action of the external synchronization per-

turbation, fs 6= 0, we find that synchronized solutions
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exist when Ω′

s lies within an interval Ω′

0
±∆Ω′. We can

define this interval as a function of the ratio between the
synchronization and self-sustaining force p = fs/f0 such
that ∆Ω′ = pδΩ′

c. Taking p = fs/f0 ≪ 1, Q ≫ 1, and
inserting into Eq. (2), this interval can be shown (see
Supplemental Information) to take the form

∆Ω′ = pδΩ′

c =
p

2Q

[

(

3QβA2

0

2Ω′

0

)2

+ 1

]1/2

. (4)

Note that ∆Ω′ is not directly dependent on the sign of the
nonlinear coefficient β (it is weakly dependent through
Ω′

0
).
Through Eq. (4), we can see that, in the case of

a linear oscillator (β = 0), the synchronization range
2∆Ω′ = p/Q is simply proportional to the linewidth of
the resonant response (Q−1) and the ratio of the synchro-
nization force to the self-sustained force (p). This depen-
dence is consistent with a competition between forces: a
stronger synchronization force increases the synchroniza-
tion range, while a stronger self-sustaining force decreases
the synchronization range. However, in the case of a non-
linear oscillator (β 6= 0), we see that this range can grow
once the first term in the brackets in Eq. (4) becomes
comparable to 1; using Eq. (3) and noting that Ω′

0
≈ 1,

we see that this occurs for |β|f2

0
& Q−3. This corresponds

to the regime where the nonlinear term (∼ |β|A3

0
) be-

comes comparable to or larger than the dissipative force
(∼ A0/Q); for large Q, this is achieved for considerably
lower amplitudes (and forces) than needed to reach the
strongly nonlinear regime described above.
We explore the amplitude dependence of the synchro-

nization range of our nonlinear oscillator in Fig. 2, where
in Fig. 2a we plot the measured oscillation frequency ver-
sus the applied synchronization frequency Ωs for various
applied self-sustained and synchronization forces, where
we hold the ratio of the two forces constant for simplic-
ity (p = fs/f0 = Vs/V0 = 0.05 and φ0 . π/2). For
each pair (V0, Vs), we sweep Ωs both upwards (blue) and
downwards (red); note that the natural frequency Ω0 of
the oscillator shifts as shown in Fig. 1b as a function of
V0. Along the upward sweep, the oscillator synchronizes
with the external forcing when Ωs reaches the vicinity
of Ω0. Above that point, the oscillation frequency is
identical to Ωs up to about one part in 105 (data on
the graph’s diagonal). Further increase of Ωs, however,
leads to sudden desynchronization at Ω0 + ∆Ω. Along
the downward sweep, synchronization persists until Ωs

reaches Ω0 − ∆Ω. In both directions, the sharp desyn-
chronization transition occurs within an interval of < 1
Hz, the size of incremental frequency change. When syn-
chronized, fluctuations in the oscillation frequency are
reduced because of the low noise level in the external os-
cillator, in this case, a signal generator [12]. It is evident
in these traces that the synchronization range is increas-
ing with increasing force despite the fact that the ratio

between the forces p is fixed.

FIG. 2: (Color online). Synchronization behavior. (a) Mea-
sured oscillation frequency vs. synchronization frequency
(Ωs/2π) for the oscillator, measured for p = 0.05 and three
values of the applied voltages. The corresponding pairs
(V0, Vs), measured in mV, are indicated by labels. Data
over the graph’s diagonal correspond to synchronized oscil-
lations. The arrows stand for the direction in which the syn-
chronization frequency was changed during each run of the
experiment. The (20,1) trace is shown in detail in the in-
set. (b) Measured synchronization range as a function of V0

(p = 0.05) for experimental data sets as shown in (a); un-
certainty and repeatability in the measured synchronization
ranges are smaller than the size of the data points. Red curve
shows the predicted behavior from Eq. (4), where we have
taken Q = 20,000. The green dotted line shows the predic-
tion for a linear oscillator (β = 0).

In Fig. 2b, we plot the width of the observed synchro-
nization range (2∆Ω) for our device as a function of the
self-sustained drive voltage V0 for p = 0.05 (Vs = pV0).
Our measured synchronization range increases with drive
voltage and is almost four orders of magnitude larger

than expected for a linear oscillator (β = 0, dotted green
line). In order to understand the correlation with theory,
we also plot the theoretical prediction of the synchro-
nization range (red line) from Eq. (4) by employing the
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measured parameters for our device; we have used the
substitution for A0 (Eq. (3)), the measured values for
√

k/m and Q, and the fit value of α = 3.1 V−1 found
from Fig. 1b (where we have again used the substitution
αV0 = |β|1/2Qf0). There are no adjustable parameters
in this curve. As seen in the figure, the dependence of
the measured synchronization range on the drive volt-
ages agrees qualitatively with the predicted values; in-
deed, the measured synchronization range is significantly
larger than the prediction, indicating that the Duffing
equation does not provide a complete description of the
closed loop and synchronized response of the nonlinear
oscillator for large self-sustaining amplitudes. In addi-
tion, in this high amplitude and highly nonlinear regime,
several factors may contribute to this discrepancy in-
cluding amplitude-dependent device parameters such as
α and Q, higher-order nonlinearities and harmonics in
both the device dynamics and the drive and signal trans-
duction (through the comb electrodes), and our use of a
finite synchronization force fS (through p) which may af-
fect the synchronization range more dramatically than we
account for in our perturbative treatment. This break-
down becomes clearer for V0 > 100 mV, where the mea-
sured synchronization range begins to saturate and the
behavior deviates qualitatively from the prediction; this
is consistent with the deviation of the measured device
frequency shown in Fig. 1b from Eq. (3) in this voltage
range. Drive voltages below V0 ∼ 20 mV are challenging
to measure for our highly nonlinear oscillator and with
our experimental setup because self-sustained oscillations
are not stable in this range; however, we believe the syn-
chronization range will decrease with reduced drive volt-
ages as suggested by the theory until it reaches the well-
understood linear regime.

In order to get a clearer picture of this surprising be-
havior, in Fig. 3 we plot the synchronization range 2∆Ω′

as a function of both |β|1/2f0 and Q as predicted by
Eqs. (3) and (4). Three regions spanning orders of mag-
nitude in synchronization range are clearly observable
and can be understood by the comparative strength of
the nonlinear term to the other terms in Duffing’s equa-
tion (Eqs. (1) and (2)). On the left of the plot, when
|β|f2

0
. Q−3, the nonlinear term (βA3

0
) is smaller than

both the dissipative term (A0/Q) and the elastic term
(A0) and the synchronization behavior is characterized
by a linear response. When Q−3 . |β|f2

0
. Q−2, the

nonlinear term dominates the dissipative term but is still
small compared to the elastic term; this regime shows
rapid increase of the synchronization range with increas-
ing nonlinearity or self-sustained driving force as demon-
strated by the measurements of our oscillator. Once
|β|f2

0
& Q−2, indicating the nonlinear force dominates

even the elastic force, the oscillator is deep in the nonlin-
ear regime and the rate of increase of the synchronization
range is slowed by the increase in the self-sustained fre-
quency due to the increase (for β > 0) in Ω′ as indicated

FIG. 3: (Color online). Contour plot of of the synchronization

range ∆Ω′ predicted by Eq. (4) as a function of |β|1/2f0 and Q
for p = 0.05. The various regions are labelled and separated
by dotted lines.

by Eq. (3).

Our results show that the Duffing model gives a good
description of the micromechanical oscillator for V0 . 100
mV. Both the nonlinear self-sustained frequency and the
increase in the synchronization range with increasing self-
sustained force are well predicted by the model. We can
estimate the nonlinearity in our device by quantifying
the strength of the applied forces; by using VDC = 5 V,
the physical parameters of our structure, and the forces
expected in a parallel-plate comb-drive, we estimate that
f0/V0 = 2.6 × 10−10 m/V. Using this, we can estimate
its nonlinear coefficient; β = 1.5× 1019 V2/m2 × α2/Q2.
For our measured value of Q & 20,000 and fit for α = 3.1
V−1, we arrive at β . 3.3× 1011 m−2. Due to its ability
to access large nonlinearities, the oscillator under study
was well-suited to probe this surprising regime of nonlin-
ear synchronization. On the other hand, we have found
that driving the oscillator with higher voltages causes the
response to deviate from the behavior predicted by the
Duffing equation. Large-amplitude oscillations appear to
be dominated by higher-order nonlinear effects.

The regime of synchronization enhancement disclosed
in this Letter, which may also be related to the sudden in-
crease of the synchronization range mentioned in a recent
publication for two coupled microoscillators [13, 14], is a
beneficial effect of nonlinearity on the coherent response
of an oscillator to an external action. It may find advan-
tageous applications in devices where many oscillators
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must be synchronized by a master signal, such as in array
of resonators for optical processing and communications
systems [15, 16], by widening the domain where synchro-
nized motion occurs. Extending the same effect to the
mutual entrainment of two or more oscillators could as-
sist the solution to some of the problems associated with
the use of micromechanical oscillators in miniaturized de-
vices. First, the undesired dependence of the oscillation
frequency with the amplitude – namely, the amplitude-
frequency (a-f) effect [4, 5], due to the nonlinear nature
of the individual dynamics – might be compensated, at
least partially, by bidirectionally coupling oscillators with
hardening and softening nonlinearities. Second, the effect
of thermal noise [8, 17] may be reduced by producing a
more robust signal from the synchronization of several
oscillators with similar self-sustained frequencies.
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