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The theory of stationary spatially localized patterns in dissipative systems driven by time-
independent forcing is well developed. With time-periodic forcing related but time-dependent struc-
tures may result. These may consist of breathing localized patterns, or states that grow for part
of the cycle via nucleation of new wavelengths of the pattern followed by wavelength annihilation
during the remainder of the cycle. These two competing processes lead to a complex phase dia-
gram whose structure is a consequence of a series of resonances between the nucleation time and
the forcing period. The resulting diagram is computed for the periodically forced quadratic-cubic
Swift–Hohenberg equation, and its details interpreted in terms of the properties of the depinning
transition for the fronts bounding the localized state on either side. The results are expected to
shed light on a large variety of periodically driven systems.

PACS numbers: 05.45.-a, 47.54.-r, 82.40.Bj, 47.20.Ky

Spatially localized structures arise in a number of sys-
tems of interest in physics, chemistry and biology [1–6].
Such states often consist of a steady spatial pattern em-
bedded in a homogeneous background. The theory of
these states is well developed, at least in one spatial di-
mension, where the spatial coordinate x can be employed
as a time-like variable to describe solutions on the real
line that evolve away from the homogenous state as x in-
creases from −∞ before returning to it as x → ∞ [7–13].
In many cases, however, the localized states may be em-
bedded in a fluctuating background [14–16] or the system
may be subject to time-dependent forcing [17–20], situa-
tions to which the current understanding does not apply.
Of particular interest is the study of vegetation patterns
that arise in semi-arid regions [21, 22]. Such systems
are often bistable between a bare soil state and a vege-
tation state, and exhibit localized structures. In models
such patterns may gradually shrink in extent or collapse
homogeneously, depending on the level of precipitation
[23]. In this Letter, we study the processes governing the
growth or decay of such patterns in systems subject to
time-periodic forcing, eg., seasonal variation in growing
conditions (precipitation, for instance) and map out the
location in parameter space where localized states persist
or decay. The intricate structure we find is a consequence
of resonances between the growth timescale and the forc-
ing period.
In the absence of periodic forcing the localized states

in these systems are found within a pinning or snaking
region in parameter space [24] whose structure is cap-
tured in detail by the Swift–Hohenberg equation with
competing nonlinear terms. This is so for shear flows [25],
convection [26], optical systems [27], and even models of
crime hotspots [28, 29]. Related equations are used to
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model localized vegetation patches [22, 23]. As a result
the Swift–Hohenberg equation has become the model of
choice for studying spatial localization in different set-
tings. We therefore adopt a model of this type to study
the properties of localized states in systems with spatially
homogeneous but temporally periodic forcing:

∂tu = r(t)u −
(

1 + ∂2
x

)2
u+ bu2 − u3. (1)

When r is a constant and b >
√

27/38 this equation
exhibits bistability between a stable homogeneous state
uh(x) ≡ 0 and a stable spatially periodic state up(x).
Within the bistability region one finds an infinite number
of different stable localized states with symmetry under
x → −x and either maxima (hereafter L0) or minima
(hereafter Lπ) at x = 0. These are located on two dis-
tinct branches within a pinning or snaking region that
straddles the so-called Maxwell point r ≡ rM , where uh

and up have the same free energy E [8, 9]. For exam-
ple, when b = 1.8 bistability is present in rp < r < 0,
where r = rp ≈ −0.3744 corresponds to a fold on the up

branch, while the localized states are found in the interval
r− < r < r+, where r− ≈ −0.3390 and r+ ≈ −0.2593 [9].
When r = r(t), Eq. (1) no longer has gradient structure
and a free energy cannot be defined, but we can define
an effective Maxwell point r ≡ r̄M using the definition

Ē = 0, where Ē = 1
T

∫ T

0
E dt and T is the oscillation pe-

riod of r(t). To study the effect of parameter oscillation
on the localized structures within the pinning region, we
take

r(t) = r0 + ρ sin

(

2πt

T

)

, (2)

with r− < r0 < r+. We choose the oscillation amplitude
ρ = 0.1 > (r+ − r−)/2 ≈ 0.04 so that the system ex-
its the pinning region on either side during each cycle.
When this is the case and r > r+ the fronts connect-
ing the localized state to uh temporarily depin and the
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FIG. 1. The four different types of dynamics obtained from Eq. (1): growth by depinning at r0 = −0.278 (a), periodic orbit
at r0 = 0.279 (b), shrinkage by depinning at r0 = −0.280 (c), and amplitude decay at r0 = −0.281 (d). Each solution is
represented in a space-time plot (left) and as a trajectory superposed on a bifurcation diagram representing the forcing r as a
function of the location of the front f (right). The bifurcation diagrams represent spatially localized (L0, blue) and spatially
periodic (up, green) states of the static system r(t) ≡ r. Parameters are T = 300, ρ = 0.1 and b = 1.8.

structure grows by nucleating additional wavelengths of
the spatial pattern. When r < r− the fronts also depin
but this time the structure starts to shrink as the ho-
mogeneous state starts to invade the periodic state. For
r < rp this process is overwhelmed by an overall decay
of the whole structure. In the limit of fast oscillations
leading order asymptotics predict that r̄M behaves as an
effective Maxwell point of the averaged system, with a re-
gion of bistability and a pinning region that shrink as T
increases. However, for larger T this is no longer the case
and the dynamics is instead organized by a series of res-
onances between the cycle period and the time required
to nucleate/annihilate wavelengths of the pattern.
Our simulations employ a fourth-order time differenc-

ing scheme [30] coupled to a Fourier scheme in space. In
all cases we use the stable spatially localized solutions
L0 of the r ≡ r0 problem as initial conditions, and solve
Eq. (1) on a periodic domain of length Γ that is suffi-
ciently large to avoid finite size effects, typically Γ = 80π,
i.e., 40 critical wavelengths. Similar results were obtained
for Lπ initial conditions.
We characterize the length of a given localized solution

in terms of the location of the fronts that connect it to
the homogeneous state on either side:

f =
2

||u||2
Γ/2

∫ Γ/2

0

xu2 dx, ||u||2Γ/2 =

∫ Γ/2

0

u2 dx. (3)

Thus the L0 states for constant forcing are bounded
by fronts at x = ±f , where f takes values near (1 +
2n)π, n = 0, 1, 2, . . . . With the forcing (2), 0 < T < ∞,

episodic depinning generates oscillations in the spatial
extent of the localized state. The number of wavelengths
lost and gained within a cycle depends on the param-
eters r0, ρ and T and the relative balance determines
whether the localized state ultimately grows through net
nucleation (Fig. 1(a)), persists indefinitely (Fig. 1(b)), or
decays by net annihilation (Fig. 1(c)). Amplitude decay
begins to dominate the dynamics of the localized states
outside of the region of bistability and, if enough time is
spent with r < rp, the amplitude of the structure may
fall below a critical value from which it cannot recover
(Fig. 1(d)). Figures 1(a)–(d) also show the corresponding
projections on the L0 bifurcation diagram [9] and reveal
that within the pinning region the solution trajectory fol-
lows appropriate portions of the L0 branch; nucleation
events are triggered when it exits the pinning region into
r > r+ and these manifest themselves in sudden jumps in
f . In contrast, the annihilation events occur in close suc-
cession and f varies continuously during the decay phase
of each cycle period.
We characterize the overall behavior by computing the

change in f , averaged over a large number (Nt ≥ 10) of
periods T :

〈△f〉 =
f(t = t0 +NtT )− f(t = t0)

Nt
, (4)

where t0 ≥ T is taken large enough to bypass initial
transients.
Simulations are run for ρ = 0.1, r− ≤ r0 ≤ r+ and

10 ≤ T ≤ 400 in increments of 10−4 in r0 and 1 in T . The
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FIG. 2. Map of the different dynamics observed in the (r0, T )
plane for ρ = 0.1 and b = 1.8. Periodic orbits exist in region
PO (Fig. 1(b)). The regions to the right (left) of PO consist,
in order, of growing (decaying) solutions where the pattern
experiences net growth (decay) by 1, 2, . . . wavelengths on ei-
ther side per cycle as exemplified in Fig. 1(c) (Fig. 1(a)). The
white region indicates parameter values at which the ampli-
tude of the localized pattern decays within one cycle inde-
pendently of its original size (Fig. 1(d)). The figure is plotted
over the pinning region r− < r0 < r+ for ρ = 0. The red dots
refer to solutions shown in Fig. 1 while the blue line indicates
the parameter values investigated in Fig. 3.
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FIG. 3. (a) Average change in the number of wavelengths
∆n = 〈△f〉/2π on each side of the localized structure per cy-
cle of the forcing as a function of r0 for T = 100, ρ = 0.1
and b = 1.8 (blue line segment in Fig. 2). (b) Length
△r of the plateaus (green crosses, plotted at integer val-
ues of ∆n) and of the transition regions between plateaus
(red circles, plotted at ∆n + 0.5 for a transition between
plateaus ∆n and ∆n + 1) as functions of ∆n. The best fit
lines, △rP (∆n) = 1.1.10−2 exp(1.02∆n) for the plateaus and
△rT (∆n) = 3.3.10−3 exp(0.96∆n) for the transition zones,
indicate that both shrink exponentially as |∆n| increases.

FIG. 4. Prediction in the (r0, T ) plane of net decay (growth)
of a spatially localized initial condition of Eq. (1) with time-
periodic forcing (2) obtained from the relation (5) with ρ =
0.1 and b = 1.8 and the numerical fit (6). Positive (resp. neg-
ative) integers represent the change in the number of wave-
lengths on either side of the localized structure due to nucle-
ation [n+] (resp. annihilation [n−]) events during one forcing
cycle; ∆n ≡ [n+] + [n−] = 0 in the dark region. The bold
black line represents the predicted location of the cliff that
marks onset of amplitude collapse. The figure is plotted over
the same r0 interval as Fig. 2.

net change 〈△f〉 in position of the right front takes values
near 0, ±2π, ±4π, etc.; 〈△f〉 = 0 indicates the presence
of a periodic orbit in which 0, 1, 2, . . . wavelengths are
added on either side of the structure and then annihilated
within each cycle period. Nonzero values of 〈△f〉 corre-
spond to a net growth or decay per cycle of 1, 2, . . . wave-
lengths on either side of the localized structure. The re-
sults are reported in Fig. 2 where the boundaries between
colored regions correspond to 〈△f〉 = ±π,±3π, . . . . The
central region of the (r0, T ) parameter plane, labeled PO,
corresponds to spatially localized, periodically breathing
states (periodic orbits) characterized by a balance be-
tween the number of wavelengths nucleated in a cycle and
the number annihilated. To the right of this region the
number of wavelengths nucleated exceeds that destroyed
and the structure gradually grows in length; the opposite
is the case to the left of PO. Both processes accelerate
with distance from this region, and in the white region in
Fig. 2 the structure collapses within one cycle regardless
of its spatial extent. This is so even for domain-filling
periodic states–a signature that the temporal forcing has
effectively narrowed the parameter range of bistability
for the system. As T increases the phase diagram ex-
hibits a succession of pinched zones, where the region of
periodic orbits shrinks dramatically, separated by sweet

spots, where it expands again. These are centered around
r0 ≈ −0.29 at low T and slant to values slightly larger
than r0 ≈ −0.28 as T increases. A similar structure is ob-
served in the regions of growing/decaying solutions. The
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variation in the pattern length to the left of the PO re-
gion is reported in Fig. 3 for T = 100. The figure reveals
a series of plateaus corresponding to the loss of a fixed
number of wavelengths per cycle. These are separated
by thinner transition zones, where the number of wave-
lengths lost per cycle is not an integer. For instance, in
the transition zone between PO and the first decay re-
gion one can find a region within which the pattern loses
two wavelengths every three oscillation cycles. Figure
3(b) reports the size of the plateaus and of the transition
zones as a function of the number of wavelengths lost per
cycle and suggests that the left boundary of the (r0, T )
region in Fig. 2 corresponds to an accumulation point of
exponentially decreasing intervals within which progres-
sively more wavelengths are lost per oscillation cycle.
Beyond this “cliff”, the system spends enough time

in r < rp that the solution reaches the trivial state via
an overall amplitude decay within one cycle regardless
of its spatial extent. The location of this cliff moves to
higher values of r0 as T increases as a consequence of
the increased time spent undergoing amplitude decay. In
an infinite domain we expect the cliff to approach r0 =
rp + ρ ≈ −0.2744 as T → ∞, as this is the threshold for
reaching r < rp during a forcing cycle.
To understand the structure seen in Fig. 2 we examine

the depinning process that takes place as soon as r(t) ex-
its the pinning region, allowing the stable periodic state
to invade the homogeneous state (r > r+) or vice versa
(r < r−). When ρ → (r+−r−)/2+δ, δ ≪ 1, this process
is slow and takes place on a O(δ−1/2) timescale. This
time is comparable to the time spent outside the pinning
region when T = O(δ−1). An asymptotic calculation

of the depinning time [9, 31] yields T dpn
± ≈ (α±δ

1/2
± )−1,

where δ± = |r − r±| and α+ ≈ 0.1682, α− ≈ 0.2279 (for
b = 1.8). Here and in the following, quantities with a
− (resp. +) subscript refer to decay (resp. nucleation)
events on the left (resp. right) of the snaking region.
This asymptotic result allows us to predict the change
in number of wavelengths on each side of the localized
structure during an excursion of the parameter r(t) out-
side the pinning region by computing

n± = ±

∫

T±

dt

T dpn
± (t)

, (5)

where T− (resp. T+) is the time spent on the left (resp.
right) of the pinning region during a cycle. We assume
that the system equilibrates to the nearest stable local-
ized state during the traverse of the pinning region, eras-
ing or completing unfinished nucleation/decay events,
and so round n± to the closest integer at time T±, de-
noted by [n±]. Although qualitatively correct, we ob-

tained better accuracy with a fifth order fit to T dpn
± . To

do so, we calculated the depinning time on the right (la-
beled with subscript +) and the left of the pinning region
(labeled with subscript −) from simulations of Eq. (1) as
a function of the distance from r±, and fitted the re-
sults using a least squares method with the polynomial

approximation

(

T dpn
±

)−1

≈

5
∑

i=1

αi±δ
i/2
± . (6)

The predictions of this procedure for different values of
r0 and T are shown in the (r0, T ) plane in Fig. 4. The
regions of constant [n+] (resp. [n−]) exist between red
(resp. blue) lines of Fig. 4 and are labeled with red (resp.
blue) integers. The sum ∆n = [n+] + [n−] indicates the
net change in the number of wavelengths of the pattern
on either side of the localized structure during one cycle
of the forcing. The PO region corresponds to locations
where this sum vanishes. This region exhibits alternating
pinching zones and sweet spots in excellent agreement
with the results presented in Fig. 2, and this agreement
extends to regions of net growth and shrinkage on either
side of the PO region; these predictions become more
and more accurate in the adiabatic limit T → ∞.
A separate calculation is required to identify the loca-

tion of the cliff beyond which the solutions irrevocably
collapse to the trivial state. We calculate this location
from a fifth order numerical fit to the collapse time T col

for periodic solutions up of the constant r problem with
r < rp. The result applies in the time-dependent problem
whenever r(t) falls below rp and the system spends suffi-
cient time in this region for the solution to collapse, i.e.,

we integrate Eq. (5) with T dpn
± (t) replaced by T col(t) over

the time interval spent in r < rp, and use the condition
n = 1/2 as a definition of the cliff. The result, shown
using a thick black line (Fig. 4), also agrees very well
with that found in Fig. 2. The theory does not, however,
capture the behavior of the exponentially compressed de-
cay regions accumulating at the cliff that are present in
the full problem (1)–(2) or the complex transition zones
between adjacent plateaus shown in Fig. 3(a).
We have described the impact of parameter oscillations

on spatially localized structures. Our results, obtained
using the simplest model of such states, reveal that the
parameter oscillation shrinks the existence region of sta-
tionary spatially localized solutions down to a connected
series of sweet spots populated by spatially localized, pe-
riodically breathing states, separated by pinched zones.
These states, which can model seasonal invasion and re-
treat of vegetation in simplest models of desertification
[21, 22], are generated by temporary depinning of the
fronts on either side, leading to an oscillation between
the growth and decay of the structure over a forcing cy-
cle. The presence of the sweet spots is a consequence of
resonances between the natural growth rate of localized
structures outside the pinning region and the forcing fre-
quency, and it is these resonances that are responsible
for the complex structure of the parameter plane of the
system (Fig. 2). These resonances occur even in gradi-
ent systems such as Eq. (1) because the growth process is
itself periodic in the frame of the depinned front. The fea-
tures of this structure are predicted quantitatively within
a theoretical framework based on the properties of the



5

depinning time in the static system (Fig. 4). This frame-
work provides insight into the dynamics of the system,
generalizes to other forms of the parameter oscillation
r(t) and provides a rationale for studying depinning of
two-dimensional patterns [32, 33], including models of

desertification [23] with time-dependent forcing.
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