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We show in microwave measurements and computer simulations that the contribution of each 
eigenchannel of the transmission matrix to the density of states (DOS) is the derivative with 
angular frequency of a composite phase shift. The accuracy of the measurement of the DOS 
determined from transmission eigenchannels is confirmed by the agreement with the DOS found 
from the decomposition of the field into modes. The distribution of the DOS, which underlies the 
Thouless number, is substantially broadened in the Anderson localization transition. We find a 
crossover from constant to exponential scaling of fluctuations of the DOS normalized by its 
average value. These results illuminate the relationships between scattering, stored energy and 
dynamics in complex media. 
 
 
 
The transmission matrix (TM) is the basis of a powerful approach to quantum and classical wave 
propagation that is able to explain the statistics of conductance [1-7] and transmission [8] and 
prescribe the degree to which the transmitted wavefront can be manipulated [9-15]. It was 
introduced by Dorokhov to explain the scaling of electronic conductance in wires1. For a wire 
connected to perfectly conducting leads that support N propagating channels, and similarly for a 
waveguide between segments of empty waveguides, the N N×  elements of thee TM, t, tba, are 
the field transmission coefficients through the sample between the incident channels a and 
outgoing channels b. The conductance in units of the quantum of conductance G/(e2/h) is 
equivalent to the classical transmittance T which can be expressed in terms of the transmission 
eigenvalues τn of the matrix product †tt , 
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=∑  [1, 6]. The probability distribution of these 
transmission eigenvalues determines the statistics of transmission [1-5, 8, 16]. 
 
For diffusive samples, the average of T over a random ensemble is given by /T g Lξ≡ = , 
where lN=ξ  is the localization length and l  is the transport mean free path.[17] For g>1, 
transport is diffusive and the flux transmitted through disordered samples in eigenchannels of 
transmission varies over a wide range with a small number of highly transmissive channels 
among a multitude of dark eigenchannels[1-5]. The transmittance is dominated by the 
approximately g “open” channels with transmission eigenvalues τn>1/e.  
 
Recently, considerable attention has focused on the power of the TM to mold the flow of waves 
through random samples [14] and to modify the energy density inside the medium [18, 19]. The 
possibility of sharp focusing and enhanced transmission has been demonstrated for sound [20], 
elastic waves [21], light [9, 13, 22]  and microwave radiation [12]. These phenomena have been 
described in terms of the transmission eigenvalues [9-13, 21], but static transmission parameters 



cannot explain the dynamics of transmission or provide the DOS whose statistics control 
emission, absorption and wave localization and give the proclivity of a medium to emit radiation 
and store energy [23-33]. The crossover to wave localization reflects the changing character of 
the underlying modes, from extended to spatially peaked. This is characterized by the Thouless 
number δ, which is essentially the ratio of the typical linewidth to the spacing of classical modes 
or quantum energy levels [17, 34]. But the full statistics of modal overlap, reflected in δ have not 
been measured.  

In this Letter, we show that the DOS can be determined from measurements of spectra of the 
TM. The contribution of each eigenchannel to the DOS is the derivative with angular frequency 
of a composite phase of the eigenchannel. Summing the contributions from all eigenchannels 
provides the first direct measurement of the DOS of a multiply scattering medium as a whole. 
The DOS determined from the eigenchannels is found to be in excellent agreement with the DOS 
found from a decomposition of the transmitted field into modes. The probability distribution of 
the DOS broadens substantially in the crossover to Anderson localization reflecting the 
increasing spectral isolation of long-lived localized modes. The eigenchannel phase derivative, 
which is equal to the delay time in transmission, increases with τn. When normalized by the 
average delay time, the eigenchannel delay time versus τn for diffusive samples of different 
length is found to fall on universal curve.  

 

The DOS of a bounded open medium for classical waves is the density of quasi-normal modes or 
resonances of a region per unit angular frequency,[34]  
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Here nω  is the central frequency and nΓ  is the linewidth of the nth mode. The integral over 
frequency of each mode in Eq. (1) is unity. Krein, Birman and  Schwinger [24-26] have shown  

that the DOS may be expressed in terms of the scattering matrix S, †1( ) /
2

i TrS dS dρ ω ω
π

= − , 

where † /iS dS dω−  is the Wigner-Smith delay-time matrix whose trace is equal to the sum of 
scattering times in all 2N channels linked to the scattering region [27, 28]. This is proportional to 
the integral of the energy stored within the medium for unit incident flux in each channel, 
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ρ ω ω∝∑ ∫  [28, 30]. The difficulty of carrying out measurements over all possible 

scattering channels has so far precluded a determination of the DOS based on the scattering 
matrix. However, the calculations of Brandbydge and Tsukada [29] of the local DOS of electrons 
based on the scattering matrix show that the DOS can be determined from measurements of the 
TM. The DOS can be obtained from the summation of the derivative of composite phase of the 
transmission eigenchannels with angular frequency. The phase derivative of the nth transmission 

eigenchannel, * *1 ( )n n n
n n

d d d
d i d d
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ω ω ω

= −u vu v , where vn and un are nth columns of the unitary 

matrices V and U, may be obtained from the singular value decomposition of the TM, †t U V= Λ  
[35]. Λ  is a diagonal matrix with elements nτ . The DOS is then  
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Each term in the sum is the contribution of a single eigenchannel to the DOS, the eigenchannel 
density of states (EDOS).  
 
This relation is an extension to multichannel systems of the equality between the DOS and the 
transmission delay time in 1D systems [31]. The eigenchannel phase derivative /nd dθ ω  
corresponds to the delay time ( )nt ωΔ  of energy for a transmitted pulse composed of a 
superposition of waves in the nth eigenchannel centered at ω in the limit of vanishing bandwidth 
[35]. 
 
Measurements of the TM for which the impact of absorption is removed are carried out in a 
copper waveguide containing randomly positioned alumina spheres [10, 16, 35, 36]. The empty 
waveguide supports ~ 66N  modes for diffusive waves and ~ 30N  for localized waves. 
Measurements are made for linearly polarized horizontal and vertical components of the field 
over the front and back surfaces of the waveguide by translating and rotating wire antennas on a 
square grid. The TM is computed using N/2 points for each polarization for diffusive wave. For 
localized waves, the measurements reported here are made for only a single polarization. The 
measurement of the TM on a grid for a single polarization is incomplete [11, 13], but we find 
that the statistics of the TM are well represented by the measured TM provided that the measured 
size of the TM, N', is much greater than the value of dimensionless conductance g in the sample 
[11, 16]. New configurations are obtained by briefly rotating and vibrating the sample tube. For 
diffusive waves, the TM was measured for three sample lengths, L=23, 40 and 61 cm, while for 
localized waves, measurements are reported here for samples of length L= 40 cm. 
 
Microwave spectra of nτ  and /nd dθ ω  for a single random configuration drawn from an 
ensemble of diffusive samples with g=6.9 and localized samples with g=0.37 are shown in Fig. 
1. In Fig. 2 we compare the DOS determined from the sum in Eq. (1) of contributions from all 
modes to the DOS given by the sum over eigenchannels in Eq. (2). The comparison is made for 
waves in the crossover to Anderson localization for which the degree of modal overlap is 
appreciable but still small enough that the full set of mode central frequencies ωn and linewidths 
Γn and so the contribution to the DOS for each mode can be accurately determined from a 
decomposition of field spectra [37]. The DOS found from the modal decomposition involves the 
analysis of the entire field spectrum and modes can be found from measurements of the TM as 
well as from measurements of field spectra within the interior of the sample [35], from which it 
is impossible to find the transmission eigenchannels. In contrast, the analysis of the transmission 
eigenchannels requires only the TM at two slightly shifted frequencies so that the derivative of 
the phase can be found. Thus the DOS determined from an analysis of modes and channels is 
independent. A plot of the spectrum of the individual modes corresponding to the terms in Eq. 
(1) is shown in Fig. 2a. Good agreement is found in Fig. 2b between the sums of the 
contributions to the DOS of all eigenchannels and of all modes determined from the TM and 
from spectra of the field inside the sample. The analysis of the TM can thus be used to find the 
DOS in samples with strong modal overlap for modal analysis is not possible. 
 



The degree of overlap of the modes of the medium is a fundamental indicator of the nature of 
wave propagation. This is encapsulated in the Thouless number, which is essentially the average 
of the ratio of the spectral width and spacing of modes [17, 37]. A more comprehensive 
representation of the nature of modal overlap in random systems would be the probability 
distribution of the relative DOS, ( ) ( )/ρ ω ρ ω< > , which can be constructed from spectra of 
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of samples with /effL ξ  ranging from 0.14 to 2 are shown in Fig. 3a. The effective sample length 
[38] is 2eff bL L z= +  with intensity extrapolation lengths beyond the sample reflecting internal 
reflection of zb=6 cm for localized waves and 13 cm for diffusive waves [10]. The distributions 
are seen to broaden with increasing sample length L, particularly beyond the crossover to 
localization at / 1L ξ =  when distinct peaks begin to emerge in the spectrum of the DOS. For 

/ 2.08effL ξ = , the probability distribution of the DOS, ( )P ρ , is seen in Fig. 3b to exhibit an 

algebraic tail as 4.81/ ρ  in agreement with simulations for this sample [35]. For ξ>>L , the tail 
of the time delay distribution for transmitted waves in a random 1D sample, which is the same as  
the DOS, is 2( ) 1/P ρ ρ∝  [39, 40]. The probability distribution of transmittance, ( )P T , for 
quasi-1D samples is found to approach the log-normal distribution predicted for ξ>>L  in 1D 
samples [41] only when the participation number of transmission eigenchannels12, 
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M  is very close to unity. ( )P T  for the sample with Leff/ξ=2.08 is a one-
sided log-normal distribution [16] and we would not expect ( )P ρ  to reach its asymptotic form 
for / 1L ξ >> .  
 
We carry out two-dimensional numerical simulations using the recursive Green’s function 
method [42] to explore the fluctuations of the DOS as well as to determine the impact of an 
incomplete measurement of the TM on estimates of the DOS. Spectra of /nd dθ ω  for a diffusive 
sample with / 0.69L ξ =  and N=33 in which fluctuations in spectra of the EDOS are still 
appreciable are shown in Fig. 4a. /nd dθ ω  is seen to coincide with normalized spectra of the 
integral of the energy density over the sample volume for a transmission eigenchannel 

( ),nV
I r dVω∫  [35], confirming that /nd dθ ω  is the contribution of the nth eigenchannel to the 

DOS, the EDOS. However, it is difficult to excite and detect all channels and the measured TM 
for diffusive waves is typically incomplete. ( / ) /nd dθ ω π  is then no longer equal to the EDOS 
and its sum does not give the DOS. Similarly, it is not possible to construct a fully transmitted 
incident wave when the TM is not complete [11]. We estimate that the best agreement between 
measurements of /nd dθ ω〈 〉  and simulations of /nd dθ ω〈 〉  shown in Fig. 5b occurs when we 
construct the simulated TM using a fraction / 0.7N N′ =  of the channels of the system. The best 
agreement between measurements and calculations of the probability distribution of transmission 
eigenvalues is also obtained for / 0.7N N′ =  [35].  
 
In Fig. 4a slight differences between spectra of the sum of /nd dθ ω  for a complete TM and for a 

sample with / 0.7N N′ =  are observed. The probability distributions 
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Fig. 4b are quite similar when 'N M>> . Significant deviations arise, however, for diffusive 
samples in which M is comparable to or larger than N ′ . The number of measured channels is 
then insufficient to accurately reflect the nature of transport. 
 
In Fig. 4b and 4c, we show the results of simulation of the scaling of the variance of 

( ) ( )/ρ ω ρ ω< >  for samples with N=16 and N=33 together with the result obtained from the 
distribution shown in Fig. 3 for / 2.07effL ξ = . In this case 'N M>> . Measurements are seen to be 
in good agreement with simulations. The variance for diffusive waves, for / 1L ξ < , is flat with a 
value of ~ 0.003  for N=33 and ~ 0.007  for N=16. Rigidity in the spectrum of the central 
frequencies of electromagnetic modes when many modes fall within the mode linewidth [43] is 
likely the origin of the constant value of the variance of ( ) ( )/ρ ω ρ ω< >  for each value of N. For 
deeply localized waves, mode spacing typically exceeds the linewidth so that fluctuations of the 
DOS increases rapidly with L/ξ as modal linewidths fall. The variance of ( ) ( )/ρ ω ρ ω< >  is seen 
in Fig. 4c to increases exponentially as 1.6 /Le ξ . Thus fluctuations of the DOS provide an 
experimental measure of L/ξ and of the degree of modal overlap for both diffusive and localized 
waves [43]. 

 
The variation of the transmission delay time with the transmission eigenvalue in diffusive 
samples is shown in Fig. 5a. /nd dθ ω〈 〉  increases with nτ  and sample length so that delay times 
are lengthened in coherent eigenchannels with high transmission. When normalized by the 
ensemble average of the photon delay time, which is the average of the single channel delay time 
between channels a and b weighted by the transmitted intensity 2

bat , 
2 2/ / /ab ab abab ab

d d t d d tϕ ω ϕ ω〈 〉 =< > < >∑ ∑ , the measurements collapse to a single curve 
(Fig. 5b). This is confirmed in simulations as shown in Fig. 5c. The constant ratio of the delay 
time /nd dθ ω〈 〉  averaged over eigenchannels of fixed nτ , to the average delay time together 
with the scaling of /d dϕ ω  as L2 for diffusive waves [44] indicates that the EDOS for a given 
value of τn scales as L2, as seen in Fig. 5d for 0.1nτ =  and 1. Though the EDOS scales as L2, the 
DOS is seen in Fig 5d to scale as L, as expected, since the number of open channels with 1/n eτ >  
is proportional to /g Lξ=  [1, 2], falls inversely with L. 
 
We have shown that it is possible to measure the dynamics and stored energy in addition to the 
transmission of each transmission eigenchannel. This makes it possible to measure the DOS as 
well as the transmittance for both diffusive and localized waves. Fluctuations in the DOS can 
provide a rich picture of the changing nature of transport in the Anderson localization transition. 
The cumulant correlation function with frequency shift of the DOS normalized to its average 
may yield the statistics of the spacing of energy levels and the probability of return of scattered 
particle of the wave to a coherence volume within the sample vs. time delay. The wave becomes 
localized when the probability of return integrated over time equals unity [43, 45]. Selective 
excitation of highly-transmissive, long-lived eigenchannels can enhance energy collection and 
lower the threshold of random lasers.  
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FIGURES 

 

 
FIG. 1 (color online). Spectra of nτ  (a,c) and spectra of ( )/nd dθ ω  (b,d) for eigenchannels 
n=1,5,15,25 for diffusive waves of sample length L=23 cm with g=6.9 (a,b), and n=1,2 for 
localized waves of length L=40 cm and g=0.37 (c,d).  
 



 
FIG. 2 (color online). (a) Contributions of the individual modes in Eq. (1) to the DOS. (b) 
Comparison of the DOS determined from the TM (red curve) by summing spectra of ( )/nd dθ ω  
and modes found from spectra of the field at the output (black curve) and from spectra of the 
field inside the sample (grey dotted curve). 



 
FIG. 3 (color online). (a) Measurement of probability distribution of the DOS normalized by its 
average value determined from the sum of /nd dθ ω  for Leff/ξ=0.14 (blue squares), Leff/ξ=0.25 
(green triangles) and Leff/ξ=2.08 (black circles). (b) Probability distribution of the DOS for 
Leff/ξ=2.08 in a semilog scale. The black line is a fit of the tail as 1/ρ4.8. 
 



 
FIG. 4 (color online). (a) Spectra of /nd dθ ω  (full curves) and the normalized integral of the 
energy density In(z) inside the sample (circles), for eigenchannels with 0.8τ =  (blue line), 

0.5τ =  (green line), 0.01τ =  (red line) for N=33 and L/ξ=0.69. The black curve is ( )ρ ω . The 
red dashed curve is '

1
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=∑  for an incomplete measurement of the TM with N'/N=0.7. (b) 
Probability distribution ( / )P ρ ρ< >  for / 0.07L ξ =  (red line), / 0.69L ξ =  (black line) and 

/ 2.2L ξ =  (blue line). The corresponding dashed curves are ' '
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with '/ 0.7N N = . (c) Variation of the variance of the normalized DOS, var( / )ρ ρ< > , as a 
function of /L ξ  in simulation with N=16 (black crosses) and N=33 (black stars) and in 
measurements (squares). The red line is an exponential fit of the data for localized waves, 

/ 1L ξ > . The results are obtained from 5000 simulations of samples with the same length but 
different degree of disorder. (d) Linear plot of var( / )ρ ρ< >  for diffusive waves.  



 
FIG. 5 (color online). (a) Averages of measured /nd dθ ω  and (b) / / /nd d d dθ ω ϕ ω , vs. 

nτ  for L=61cm (red circles), L=40 cm (green triangles) and L=23 cm (blue filled circles). The 
black curve is obtained from simulations in which / 0.7N N′ = . (c) simulations for the complete 
TM of / / /nd d d dθ ω ϕ ω  with / 0.06L ξ =  (blue dots), / 0.1L ξ =  (cyan squares), 

/ 0.17L ξ =  (magenta triangles) and / 0.25L ξ =  (black crosses). (d) Scaling of /nd dθ ω  for 

eigenchannels with 1τ =  (blue dots) and 0.1τ =  (blue triangles), of /d dϕ ω  (blue stars), and 
of ρ< >  (red crosses). 
 
 
 


