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The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack
of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is im-
possible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk
excitations and topology-dependent ground state degeneracy. However, the partition functions from
path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs.
In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any
dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of
continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs
predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-
cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in 4+1D via
the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve
as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition,
our field theory representations are independently powerful for studying group cohomology within
the mathematical context.

Gapped systems without symmetry breaking1,2 can
have intrinsic topological order.3–5 However, even with-
out symmetry breaking and without topological order,
gapped systems can still be nontrivial if there is cer-
tain global symmetry protection, known as Symmetry-
Protected Topological states (SPTs).6–9 Their non-
trivialness can be found in the gapless/topological
boundary modes protected by a global symmetry, which
shows gauge or gravitational anomalies.10–30 More pre-
cisely, they are short-range entangled states which can
be deformed to a trivial product state by local unitary
transformation31–33 if the deformation breaks the global
symmetry. Examples of SPTs are Haldane spin-1 chain
protected by spin rotational symmetry34,35 and the topo-
logical insulators36–38 protected by fermion number con-
servation and time reversal symmetry.

While some classes of topological orders can
be described by topological quantum field theories
(TQFT),39–42 it is less clear how to systematically con-
struct field theory with a global symmetry to classify or
characterize SPTs for any dimension. This challenge
originates from the fact that SPTs is naturally defined on
a discretized spatial lattice or on a discretized spacetime
path integral by a group cohomology construction6,43 in-
stead of continuous fields. Group cohomology construc-
tion of SPTs also reveals a duality between some SPTs
and the Dijkgraaf-Witten topological gauge theory.43,62

Some important progresses have been recently made
to tackle the above question. For example, there
are 2+1D44 Chern-Simons theory,45–49 non-linear sigma
models,50,51 and an orbifolding approach implementing
modular invariance on 1D edge modes.25,28 The above
approaches have their own benefits, but they may be ei-
ther limited to certain dimensions, or be limited to some
special cases. Thus, the previous works may not fulfill all
SPTs predicted from group cohomology classifications.

In this work, we will provide a more systematic way to

tackle this problem, by constructing topological response
field theory and topological invariants for SPTs (SPT
invariants) in any dimension protected by a symmetry
group G. The new ingredient of our work suggests a
one-to-one correspondence between the continuous semi-
classical probe-field partition function and the discretized
cocycle of cohomology group, Hd+1(G,R/Z), predicted
to classify d + 1D SPTs with a symmetry group G.52

Moreover, our formalism can even attain SPTs beyond
group cohomology classifications.16–18,20–22

For systems that realize topological orders, we can adi-
abatically deform the ground state |Ψg.s.(g)〉 of parame-
ters g via:

〈Ψg.s.(g + δg)|Ψg.s.(g)〉 ' . . .Z0 . . . (1)

to detect the volume-independent universal piece of par-
tition function, Z0, which reveals non-Abelian geometric
phase of ground states.5,30,53–58 For systems that real-
ize SPTs, however, their fixed-point partition functions
Z0 always equal to 1 due to its unique ground state on
any closed topology. We cannot distinguish SPTs via
Z0. However, due to the existence of a global sym-
metry, we can use Z0 with the symmetry twist59–61 to
probe the SPTs. To define the symmetry twist, we note
that the Hamiltonian H =

∑
xHx is invariant under

the global symmetry transformation U =
∏

all sites Ux,
namely H = UHU−1. If we perform the symmetry
transformation U ′ =

∏
x∈∂R Ux only near the bound-

ary of a region R (say on one side of ∂R), the local
term Hx of H will be modified: Hx → H ′x|x near ∂R.
Such a change along a codimension-1 surface is called
a symmetry twist, see Fig.1(a)(d), which modifies Z0 to
Z0(sym.twist). Just like the geometric phases of the de-
generate ground states characterize topological orders,30

we believe that Z0(sym.twist), on different spacetime
manifolds and for different symmetry twists, fully char-
acterizes SPTs.59,60
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FIG. 1. On a spacetime manifold, the 1-form probe-field A
can be implemented on a codimension-1 symmetry-twist59,60

(with flat dA = 0) modifying the Hamiltonian H, but the
global symmetry G is preserved as a whole. The symmetry-
twist is analogous to a branch cut, going along the arrow
- - -B would obtain an Aharonov-Bohm phase eig with
g ∈ G by crossing the branch cut (Fig.(a) for 2D, Fig.(d)
for 3D). However if the symmetry twist ends, its ends are
monodromy defects with dA 6= 0, effectively with a gauge
flux insertion. Monodromy defects in Fig.(b) of 2D act like
0D point particles carrying flux,26,59,62,64,65 in Fig.(e) of 3D
act like 1D line strings carrying flux.66–69 The non-flat mon-
odromy defects with dA 6= 0 are essential to realize

∫
Au dAv

and
∫
AuAv dAw for 2D and 3D, while the flat connections

(dA = 0) are enough to realize the top Type
∫
A1A2 . . . Ad+1

whose partition function on a spacetime Td+1 torus with
(d+1) codimension-1 sheets intersection (shown in Fig.(c),(f)
in 2+1D, 3+1D) renders a nontrivial element for Eq.(2).

The symmetry twist is similar to gauging the on-site
symmetry62,63 except that the symmetry twist is non-
dynamical. We can use the gauge connection 1-form A to
describe the corresponding symmetry twists, with probe-
fields A coupling to the matter fields of the system. So
we can write52

Z0(sym.twist) = eiS0(sym.twist) = eiS0(A). (2)

Here S0(A) is the SPT invariant that we search for.
Eq.(2) is a partition function of classical probe fields, or a
topological response theory, obtained by integrating out
the matter fields of SPTs path integral. Below we would
like to construct possible forms of S0(A) based on the
following principles:52 (1) S0(A) is independent of space-
time metrics (i.e. topological), (2) S0(A) is gauge invari-
ant (for both large and small gauge transformations), and
(3) “Almost flat” connection for probe fields.

Let us start with a simple example of SPTs with
a single global U(1) symmetry. We can probe the
system by coupling the charge fields to an external
probe 1-form field A (with a U(1) gauge symmetry),
and integrate out the matter fields. In 1+1D, we can
write down a partition function by dimensional count-
ing: Z0(sym.twist) = exp[ i θ

2π

∫
F ] with F ≡ dA,

this is the only term allowed by U(1) gauge symmetry

U†(A − id)U ' A + df with U = eif . More gener-
ally, for an even (d + 1)D spacetime, Z0(sym.twist) =
exp[ i θ

( d+1
2 )!(2π)

d+1
2

∫
F ∧ F ∧ . . .]. Note that θ in such an

action has no level-quantization (θ can be an arbitrary
real number). Thus this theory does not really corre-
spond to any nontrivial class, because any θ is smoothly
connected to θ = 0 which represents a trivial SPTs.

In an odd dimensional spacetime, such as 2+1D,
we have Chern-Simons coupling for the probe field
action Z0(sym.twist) = exp[ i k

4π

∫
A ∧ dA]. More

generally, for an odd (d + 1)D, Z0(sym.twist) =
exp[ i 2πk

( d+2
2 )!(2π)(d+2)/2

∫
A ∧ F ∧ . . .], which is known to

have level-quantization k = 2p with p ∈ Z for bosons,
since U(1) is compact. We see that only quantized topo-
logical terms correspond to non-trivial SPTs, the allowed
responses S0(A) reproduces the group cohomology de-
scription of the U(1) SPTs: an even dimensional space-
time has no nontrivial class, while an odd dimension has
a Z class.

Next we consider SPTs with
∏
u ZNu -symmetry. Pre-

viously the evaluation of U(1) field on a closed loop
(Wilson-loop)

∮
Au can be arbitrary values, whether the

loop is contractable or not, since U(1) has continuous
value. For finite Abelian group symmetry G =

∏
u ZNu

SPTs, (1) the large gauge transformation δAu is identi-
fied by 2π (this also applies to U(1) SPTs). (2) probe
fields have discrete ZN gauge symmetry,∮

δAu = 0 (mod 2π),

∮
Au =

2πnu
Nu

(mod 2π). (3)

For a non-contractable loop (such as a S1 circle of a
torus), nu can be a quantized integer which thus allows
large gauge transformation. For a contractable loop, due
to the fact that small loop has small

∮
Au but nu is dis-

crete,
∮
Au = 0 and nu = 0, which imply the curvature

dA = 0, thus A is flat connection locally.
For 1+1D, the only quantized topological term is:

Z0(sym.twist) = exp[ i kII

∫
A1A2]. Here and below we

omit the wedge product ∧ between gauge fields as a
conventional notation. Such a term is gauge invari-
ant under transformation if we impose flat connection
dA1 = dA2 = 0, since δ(A1A2) = (δA1)A2 + A1(δA2) =
(df1)A2 +A1(df2) = −f1(dA2)− (dA1)f2 = 0. Here we
have abandoned the surface term by considering a 1+1D
closed bulk spacetimeM2 without boundaries. The level
quantization of kII and its group structure can be derived
from two rules: large gauge transformation and flux iden-
tification.

The invariance of Z0 under the allowed large gauge
transformation via Eq.(3) implies that the volume-
integration of

∫
δ(A1A2) must be invariant mod 2π,

namely (2π)2kII
N1

= (2π)2kII
N2

= 0 (mod 2π). This rule im-
plies the level-quantization.

On the other hand, when the ZN1
flux from A1, ZN2

flux from A2 are inserted as n1, n2 multiple units of

2π/N1, 2π/N2, we have kII

∫
A1A2 = kII

(2π)2

N1N2
n1n2. We

see that kII and k′II = kII + N1N2

2π give rise to the same
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partition function Z0. Thus they must be identified
(2π)kII ' (2π)kII + N1N2, as the rule of flux identifi-
cation. These two rules impose

Z0(sym.twist) = exp[ i pII
N1N2

(2π)N12

∫
M2

A1A2], (4)

with kII = pII
N1N2

(2π)N12
, pII ∈ ZN12 . We abbre-

viate the greatest common divisor (gcd) N12...u ≡
gcd(N1, N2, . . . , Nu). Amazingly we have independently
recovered the formal group cohomology classification pre-
dicted as H2(

∏
u ZNu ,R/Z) =

∏
u<v ZNuv .

For 2+1D, we can propose a naive Z0(sym.twist) by di-
mensional counting, exp[ i kIII

∫
A1A2A3], which is gauge

invariant under the flat connection condition. By the
large gauge transformation and the flux identification,
we find that the level kIII is quantized,52 thus

Z0(sym.twist) = exp[ i pIII
N1N2N3

(2π)2N123

∫
M3

A1A2A3],(5)

named as Type III SPTs with a quantized level pIII ∈
ZN123

. The terminology “Type” is introduced and used
in Ref.70 and 68. As shown in Fig.1, the geometric way to
understand the 1-form probe field can be regarded as (the
Poincare-dual of) codimension-1 sheet assigning a group
element g ∈ G by crossing the sheet as a branch cut.
These sheets can be regarded as the symmetry twists59,60

in the SPT Hamiltonian formulation. When three sheets
(yt, xt, xy planes in Fig.1(c)) with nontrivial elements
gj ∈ ZNj intersect at a single point of a spacetime T3

torus, it produces a nontrivial topological invariant in
Eq.(2) for Type III SPTs.

There are also other types of partition functions, which
require to use the insert flux dA 6= 0 only at the mon-
odromy defect (i.e. at the end of branch cut, see Fig.1(b))
to probe them:11,47–49,70,71

Z0(sym.twist) = exp[ i
p

2π

∫
M3

AudAv], (6)

where u, v can be either the same or different gauge
fields. They are Type I, II actions: pI,1

∫
A1 dA1,

pII,12

∫
A1 dA2, etc. In order to have e i

pII
2π

∫
M3 A1 dA2 in-

variant under the large gauge transformation, pII must

be integer. In order to have e i
pI
2π

∫
M3 A1 dA1 well-defined,

we separate A1 = Ā1 + AF1 to the non-flat part A1

and the flat part AF1 . Its partition function becomes

e i
pI
2π

∫
M3 A

F
1 dĀ1 .52 The invariance under the large gauge

transformation of AF1 requires pI to be quantized as inte-
gers. We can further derive their level classification via
Eq.(3) and two more conditions:∫����∫

dAv = 0 (mod 2π),

∫����∫
δdAv = 0. (7)

The first means that the net sum of all monodromy-
defect fluxes on the spacetime manifold must have in-
teger units of 2π. Physically, a 2π flux configuration is
trivial for a discrete symmetry group ZNv . Therefore
two SPT invariants differ by a 2π flux configuration on

their monodromy-defect should be regarded as the same
one. The second condition means that the variation of
the total flux is zero. From the above two conditions for
flux identification, we find the SPT invariant Eq.(6) de-
scribes the ZN1

SPTs pI ∈ ZN1
= H3(ZN1

,R/Z) and the
ZN1
× ZN2

SPTs pII ∈ ZN12
⊂ H3(ZN1

× ZN2
,R/Z).52

For 3+1D, we derive the top Type IV partition function
that is independent of spacetime metrics:

Z0(sym.twist) = exp[i
pIVN1N2N3N4

(2π)3N1234

∫
M4

A1A2A3A4], (8)

where dAi = 0 to ensure gauge invariance. The large
gauge transformation δAi of Eq.(3), and flux identifica-

tion recover pIV ∈ ZN1234
⊂ H4(

∏4
i=1 ZNi ,R/Z). Here

the 3D SPT invariant is analogous to 2D, when the
four codimension-1 sheets (yzt, xzt, yzt, xyz-branes in
Fig.1(f)) with flat Aj of nontrivial element gj ∈ ZNj in-

tersect at a single point on spacetime T4 torus, it renders
a nontrivial partition function for the Type IV SPTs.

Another response is for Type III 3+1D SPTs:

Z0(sym.twist) = exp[i

∫
M4

pIIIN1N2

(2π)2N12
A1A2 dA3], (9)

which is gauge invariant only if dA1 = dA2 = 0. Based
on Eq.(3),(7), the invariance under the large gauge trans-
formations requires pIII ∈ ZN123

. Eq.(9) describes Type

III SPTs: pIII ∈ ZN123
⊂ H4(

∏3
i=1 ZNi ,R/Z).52

Yet another response is for Type II 3+1D SPTs:72,73

Z0(sym.twist) = exp[i

∫
M4

pIIN1N2

(2π)2N12
A1A2 dA2]. (10)

The above is gauge invariant only if we choose A1 and
A2 such that dA1 = dA2 dA2 = 0. We denote A2 =
Ā2 + AF2 where Ā2 dĀ2 = 0, dAF2 = 0,

∮
Ā2 = 0 mod

2π/N2, and
∮
AF2 = 0 mod 2π/N2. Note that in general

dĀ2 6= 0, and Eq.(10) becomes e
i
∫
M4

pIIN1N2
(2π)2N12

A1A
F
2 dĀ2

.
The invariance under the large gauge transformations of
A1 and AF2 and flux identification requires pII ∈ ZN12

=

H4(
∏2
i=1 ZNi ,R/Z) of Type II SPTs.52 For Eq.(9),(10),

we have assumed the monodromy line defect at dA 6= 0 is
gapped ;66,68 for gapless defects, one will need to introduce
extra anomalous gapless boundary theories.

Now we systematically study the physical probes
of SPTs.52 The SPT invariants can help us to de-
sign physical probes for their SPTs. Let us consider:

Z0(sym.twist)= exp[ip
∏d+1
j=1 Nj

(2π)dN123...(d+1)

∫
A1A2 . . . Ad+1], a

generic top type
∏d+1
j=1 ZNj SPT invariant in (d + 1)D,

and its observables.
If we design the space to have a topology (S1)d, and

add the unit symmetry twist of the ZN1
, ZN2

, . . . , ZNd
to the S1 in d directions respectively:

∮
S1 Aj = 2π/Nj .

The SPT invariant implies that such a configuration will

carry a ZNd+1
induced charge p Nd+1

N123...(d+1)
.

We can also apply dimensional reduction to probe
SPTs. We can design the dD space as (S1)d−1 × I, and
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add the unit ZNj symmetry twists along the j-th S1 cir-
cles for j = 3, . . . , d+1. This induces a 1+1D ZN1

×ZN2

SPT invariant exp[ i p N12

N123...(d+1)

N1N2

2πN12

∫
A1A2] on the 1D

spatial interval I. The 0D boundary of the reduced 1+1D
SPTs has degenerate zero energy modes that form a pro-
jective representation of ZN1

×ZN2
symmetry.26 For ex-

ample, dimensional reducing 3+1D SPTs Eq.(8) to this
1+1D SPTs, if we break the ZN3

symmetry on the ZN4

monodromy defect line, gapless excitations on the defect
line will be gapped. A ZN3

symmetry-breaking domain
wall on the gapped monodromy defect line will carry de-
generate zero modes that form a projective representa-
tion of ZN1

× ZN2
symmetry.

For Eq.(8), we design the 3D space as S1 ×M2, and
add the unit ZN4 symmetry twists along the S1 circle.
Then Eq.(8) reduces to the 2+1D ZN1 × ZN2 × ZN3

SPT invariant exp[ i pIV
N123

N1234

N1N2N3

2πN123

∫
A1A2A3] labeled

by pIV
N123

N1234
∈ ZN123 ⊂ H3(ZN1 × ZN2 × ZN3 ,R/Z).

Namely, the ZN4
monodromy line defect carries gap-

less excitations identical to the edge modes of the 2+1D
ZN1
×ZN2

×ZN3
SPTs if the symmetry is not broken.59

Now let us consider lower type SPTs, take 3+1D∫
A1A2 dA3 of Eq.(9) as an example.52 There are at least

two ways to design physical probes. First, we can de-
sign the 3D space as M2 × I, where M2 is punctured
with N3 identical monodromy defects each carrying n3

unit ZN3
flux, namely

∫����∫
dA3 = 2πn3 of Eq.(7). Eq.(9)

reduces to exp[ i pIIIn3
N1N2

(2π)N12

∫
A1A2], which again de-

scribes a 1+1D ZN1
× ZN2

SPTs, labeled by pIIIn3 of
Eq.(4) in H2(ZN1

× ZN2
,R/Z) = ZN12

. This again has
0D boundary-degenerate-zero-modes.

Second, we can design the 3D space as S1 ×M2 and
add a symmetry twist of ZN1 along the S1:

∮
S1 A1 =

2πn1/N1, then the SPT invariant Eq.(9) reduces to

exp[ i pIII n1N2

(2π)N12

∫
A2 dA3], a 2+1D ZN2 × ZN3 SPTs la-

beled by pIII n1N2

N12
of Eq.(6).

These
∫
AdA types in Eq.(6), can be detected by the

nontrivial braiding statistics of monodromy defects, such
as the particle/string defects in 2D/3D.48,62,66–69 More-
over, a ZN1 monodromy defect line carries gapless excita-
tions identical to the edge of the 2+1D ZN2 ×ZN3 SPTs.
If the gapless excitations are gapped by ZN2 -symmetry-
breaking, its domain wall will induce fractional quantum
numbers of ZN3

charge,26,74 similar to Jackiw-Rebbi75 or
Goldstone-Wilczek76 effect.

It is straightforward to apply the above results
to SPTs with U(1)m symmetry. Again, we find
only trivial classes for even (d + 1)D. For odd
(d + 1)D, we can define the lower type action:
Z0(sym.twist) = exp[ i 2πk

( d+2
2 )!(2π)(d+2)/2

∫
Au ∧ Fv ∧ . . .].

Meanwhile we emphasize that the top type action with
k
∫
A1A2 . . . Ad+1 form will be trivial for U(1)m case since

its coefficient k is no longer well-defined, at N → ∞
of (ZN )m SPTs states. For physically relevant 2 + 1D,
k ∈ 2Z for bosonic SPTs. Thus, we will have a

Zm × Zm(m−1)/2 classification for U(1)m symmetry.52

We have discussed the allowed action S0(sym.twist)
that is described by pure gauge fields Aj . We find that
its allowed SPTs coincide with group cohomology results.
For a curved spacetime, we have more general topologi-
cal responses that contain both gauge fields for symmetry
twists and gravitational connections Γ for spacetime ge-
ometry. Such mixed gauge-gravity topological responses
will attain SPTs beyond group cohomology. The possi-
bility was recently discussed in Ref.17 and 18. Here we
will propose some additional new examples for SPTs with
U(1) symmetry.

In 4+1D, the following SPT response exists,

Z0(sym.twist) = exp[i
k

3

∫
M5

F ∧ CS3(Γ)]

= exp[i
k

3

∫
N 6

F ∧ p1], k ∈ Z (11)

where CS3(Γ) is the gravitations Chern-Simons 3-form
and d(CS3) = p1 is the first Pontryagin class. This SPT
response is a Wess-Zumino-Witten form with a surface
∂N 6 =M5. This renders an extra Z-class of 4+1D U(1)
SPTs beyond group cohomology. They have the follow-
ing physical property: If we choose the 4D space to be
S2 ×M2 and put a U(1) monopole at the center of S2:∫
S2 F = 2π, in the largeM2 limit, the effective 2+1D the-

ory on M2 space is k copies of E8 bosonic quantum Hall
states. A U(1) monopole in 4D space is a 1D loop. By
cuttingM2 into two separated manifolds, each with a 1D-
loop boundary, we see U(1) monopole and anti-monopole
as these two 1D-loops, each loop carries k copies of E8

bosonic quantum Hall edge modes.77 Their gravitational
response can be detected by thermal transport with a

thermal Hall conductance,78 κxy = 8k
π2k2B

3h T .
To conclude, the recently-found SPTs, described by

group cohomology, have SPT invariants in terms of pure
gauge actions (whose boundaries have pure gauge anoma-
lies11,13–15,26). We have derived the formal group coho-
mology results from an easily-accessible field theory set-
up. For beyond-group-cohomology SPT invariants, while
ours of bulk-onsite-unitary symmetry are mixed gauge-
gravity actions, those of other symmetries (e.g. anti-
unitary-symmetry time-reversal ZT2 ) may be pure grav-
ity actions.18 SPT invariants can also be obtained via
cobordism theory,17–19 or via gauge-gravity actions whose
boundaries realizing gauge-gravitational anomalies. We
have incorporated this idea into a field theoretic frame-
work, which should be applicable for both bosonic and
fermionic SPTs and for more exotic states awaiting fu-
ture explorations.
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