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We study the tensor spectral index nt and the tensor-to-scalar ratio r in the simplest multifield
extension to single-field, slow-roll inflation models. We show that multifield models with potentials
V ∼

∑
i λi|φi|p have different predictions for nt/r than single-field models, even when all the

couplings are equal λi = λj , due to the probabilistic nature of the fields’ initial values. We analyze
well-motivated prior probabilities for the λi and initial conditions to make detailed predictions for
the marginalized probability distribution of nt/r. With O(100) fields and p > 3/4, we find that nt/r
differs from the single-field result of nt/r = −1/8 at the 5σ level. This gives a novel and testable
prediction for the simplest multifield inflation models.

A cosmological gravitational wave background
(CGWB) is a compelling signature of inflation, which
is already supported by the highly Gaussian primordial
perturbations [1, 2] and their broken scale invariance,
now detected at 5σ significance [3, 4]. A large-amplitude
CGWB provides fundamentally new tests of single-field
slow-roll (SFSR) inflation via the consistency relation
[5] nt/r = −1/8, which relates the tensor spectral index
nt to the ratio of the tensor and scalar perturbation
amplitudes, r.

While there has been dramatic progress towards the
direct detection of a CGWB through the B-mode po-
larization in the cosmic microwave background (CMB)
[6], measuring nt is challenging with current technolo-
gies [7–9]. However, for r & 0.1 this will be feasible
with the next generation of space-based [10, 11], ground-
based [12–15], and balloon-borne [16, 17] experiments,
while future 21 cm projects [18, 19] could also detect
lensing by a CGWB and direct detection experiments
[20, 21] would test the consistency condition using the
lever arm between CMB and solar system scales to far
greater accuracy with r & O(10−3).

The simplest inflationary scenarios that yield an easily
detectable CGWB are monomial models with the infla-
tionary potential V ∼ |φ|p, which have 0.05 . r . 0.30
for 2/3 . p . 4. Single field models are simple but not
necessarily natural , as many high energy theories yield
large numbers of scalar degrees of freedom [22–25]. For
multifield models the consistency relation is reduced to
an inequality, nt/r ≤ −1/8. While r and nt are corre-
lated for Nf = 2 [26, 27], there is no known relationship
between r and nt when Nf is large.

In this Letter , we derive a robust prediction for nt/r
for Nf -monomial models, with potential

V =
1

p

∑
i

λi|φi|p, (1)

where λi are real, positive constants and summations run
over the number of fields, Nf . Eq. (1) arises naturally

in many high energy theories [28–35] and is a simple,
intuitive generalization of the chaotic SFSR models.

We treat the λi and the values of φi at a fixed num-
ber of e-folds before the end of inflation as independent
random variables. When Nf →∞, the central limit the-
orem ensures that nt/r is a Gaussian random variable.
Critically, 〈nt/r〉 does not reduce to the single-field limit
if the couplings are identical unless the field values φi,∗
when the pivot scale k∗ leaves the horizon are also fixed,
except for the special case p = 2. The expected value
of nt/r depends only on two moments of the distribu-
tions of the λi and φi, and is independent of Nf . The
variance in nt/r is s2nt/r

∼ 1/Nf (for p > 3/4), giving
a sharp, generic prediction for the consistency relation
in the many-field limit. This provides a direct test for
distinguishing between Nf -monomial models and their
single-field analogues.

Model— In some cases the λi in Eq. (1) might be
derivable from fundamental theory, but in general we are
ignorant of their values, so we treat these terms as inde-
pendent random variables (RVs) with a prior probability
P (λ). Similarly, we do not know the fields’ initial condi-
tions, so we also treat these as identically distributed, but
possibly correlated, RVs with a prior probability P (φ0).
We then marginalize over the P (λ) and P (φ0) to pro-
duce a probability distribution for nt/r. Since a change
of variables φi → φ̃i(φj , λj) will mix the λi and φi, it is
clear that there is no a priori difference between these
two types of parameters, motivating our statistical ap-
proach.

The simplest choice for P (φ0) is a uniform distribution
of φi,∗ defined when the pivot scale k∗ leaves the horizon
N∗ e-folds before the end of inflation. This choice con-
tains the least Shannon information about the fields’ ini-
tial states and ensures that most of the fields are dynam-
ically relevant. Further, this P (φ0) and others were ex-
tensively studied in Ref. [36], where it was shown that the
initial conditions only weakly affect the predicted density
spectra. The likely values of ns and r for a related class
of multifield monodromy models was derived in Ref. [37],
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finding 0.955 . ns . 0.975. Furthermore, r = 4p/N∗,
and the non-Gaussianity is small.
δN formalism— The potential in Eq. (1) is sum-

separable and, assuming slow-roll, N∗ is [38, 39]

N∗ = −
∫ c

∗

∑
i

Vi
V ′i
dφi, (2)

where V ′i = λi|φi|p−1 and φi,∗ and φi,c denote field values
at horizon crossing and the end of inflation, respectively.
For Nf -monomial inflation

N∗ =
1

2p

∑
i

[
φ2i,∗ − φ2i,c

]
. (3)

The δN formalism relates the field perturbations at
horizon crossing to the gauge-invariant curvature pertur-
bation ζ on constant density hypersurfaces via

ζ ≈
∑
i

N∗,iδφi,∗, (4)

where N∗,i ≡ ∂N∗/∂φi,∗. If the field perturbations are
well-approximated by a free field theory with power spec-
trum Pijδφ = (H∗/2π)2δij at horizon crossing, the tensor-
to-scalar ratio is

r =
8∑

iN∗,iN∗,i
. (5)

To first-order in slow-roll nt = −2ε, where

ε =
1

2

∑
i

[
V ′i
V

]2
. (6)

For Nf -monomial models, the field values φi,c at the
end of inflation can typically be neglected. This horizon
crossing approximation (HCA) (e.g., Refs. [38, 40]) is a
simplification of the δN formalism that incorporates the
super-horizon evolution of ζ, but ignores quantities con-
tributing to N∗ from the end-of-inflation surface. Setting
φi,c → 0 in Eq. (3), we find

nt
r

= − 1

4p2
ε
∑
i

φ2i,∗ , (7)

where we restrict our attention to cases that are slowly
rolling at horizon crossing. Requiring ε . 0.1 then sets
the maximum deviation from the single-field result as

−
(
N∗
2p

)
×O(10−1) .

nt
r
≤ −1

8
. (8)

The many-field limit— We build the probability
distribution for nt/r by marginalizing Eq. (7) over P (φ0)
and P (λ), and use the central limit theorem (CLT) to
take the large Nf limit, Nf → ∞. By Eq. (3) the
HCA implies that P (φ0) is a uniform distribution pulled
back onto anNf -sphere in field-space with radius

√
2pN∗.

Since the multivariate normal distribution ~x ∼ N (0,1)
is invariant under rotations of ~x, we can sample this Nf -
sphere uniformly by defining

φi,∗ =

√
2pN∗∑
j x

2
j

xi for ~x ∼ N (0,1). (9)

Using Eq. (9), the summations in Eqs. (6) and (7) are

∑
i

λni |φi,∗|m =
∑
i

λni

[
2pN∗∑
j x

2
j

]m
2

|xi|m. (10)

As Nf → ∞ the CLT shows that the numerator is nor-
mally distributed with mean

µnum = Nf (2pN∗)
m/2 〈λn〉 〈|x|m〉 (11)

and standard deviation

snum =
√
Nf (2pN∗)

m/2
σn,m, (12)

where 〈.〉 indicates expected value and

σ2
n,m ≡

〈
λ2n
〉 〈
|x|2m

〉
− 〈λn〉2 〈|x|m〉2 , (13)

which assumes that the λi and xj are independent.
Finally, the denominator in Eq. (9) is drawn from
the χ-distribution, which is closely approximated by
N (
√
Nf , 1/

√
2) for xi ∼ N (0, 1).

The numerator and denominator in Eq. (10) are cor-
related by the constraint in Eq. (3). For a given variance
in P (λ), the correlation γ is maximized when m = 2 and
|γ| → 1 as the variance vanishes. Since each

∑
i λ

n
i |φi,∗|m

is uniquely determined given ~λ and ~φ∗, we expect a strong
correlation between the numerator and denominator in
Eq. (6) for typical choices of P (λ). This significantly re-
duces the variance of nt/r, and ensures a sharp prediction
for its value. We numerically calculate γ after defining
the priors on λ.

For any normally distributed variable y ∼ N (µ, σ)

〈|y|m〉 =
2

m
2 σm√
π

Γ

(
1 +m

2

)
F1,1

(−m
2

;
1

2
;
−µ2

2σ2

)
, (14)

for m > −1, and F1,1 is the confluent hypergeometric
function of the first kind. If µ = 0, as for xi ∼ N (0, 1),
then F1,1 = 1 and only the Γ function contributes to the
moments.

If m < −1, 〈|y|m〉 may diverge if P (y = 0) does not
vanish fast enough. This is indeed the case for xi ∼
N (0, 1), and we cannot predict the distribution of the
sums in Eq. (10) with m ≤ −1. Sums like Eq. (10) are
effectively finite numerical approximations to the integral

1

Nf

∑
i

λni |xi|m ≈
∫
|x|mN (0, 1)dx

∫
λnP (λ)dλ, (15)
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which diverges for m < −1. While ratios of these sums
might be well-defined [41], our approach shows that a
finite prediction for both the mean and the standard de-
viation of nt/r requires p > 3/4, while only requiring a
finite mean needs p > 1/2, using the CLT.

The method— Since nt/r is given by Eq. (7) and
the sums in Eq. (10) are ratios of correlated, normally
distributed RVs, the key tool for this analysis is the ratio
distribution fratio(α/β) for normally distributed RVs α
and β. If w ≡ α/β, then as P (β > 0) → 1 the CDF for
the ratio distribution fratio(w) is approximately [42]

Fratio(w) = Φ

[
µβw − µα
σασβa(w)

]
, (16)

where µi and σ2
i are the respective means and variances,

a(w) ≡
[
w2

σ2
α

− 2γw

σασβ
+

1

σ2
β

]1/2
, (17)

and

Φ(z) ≡ 1

2

[
1 + Erf

(
z√
2

)]
(18)

for real z. When Nf is large, fratio approaches a normal
distribution with mean µα/µβ and standard deviation

s =

√
µ2
βσ

2
α − 2γµαµβσασβ + µ2

ασ
2
β

µ2
β

. (19)

The mean of fratio is independent of the correlations γ,
and the standard deviation for nt/r is a straightforward
— but messy — algebraic function of 〈λ〉,

〈
λ2
〉
, and

〈
λ4
〉
,

as well as 〈|x|m〉 for m = 2, 4, p, 2p, 2p− 2, and 4p− 4.
To obtain the distribution fratio(nt/r) we express the

consistency relation in terms of the sums in Eq. (10) as

nt
r

= −pN∗
4

∑i λ
2
i |φi,∗|2p−2(∑
j λj |φj |p

)2
 . (20)

For each sum above, we calculate the covariance in
Eq. (10) between the numerator and denominator given
P (λ), and use Eq. (19) to find the variance of the sum.
Although the denominator (

∑
i λi|φi,∗|p)2 is then χ2-

distributed, this is approximately normal in the many-
field limit. We then substitute these two normally-
distributed RVs back into Eq. (16). Similarly, we evalu-
ate the correlation between the numerator and denomi-
nator in Eq. (20), finally obtaining the probability distri-
bution for nt/r.

Novel multifield predictions— From the ratio dis-
tribution (16), as Nf →∞ the value of nt/r in Eq. (20)
is normally distributed with a mean〈nt

r

〉
Nf↑

=

[
−1

8

][〈
λ2
〉

〈λ〉2

][√
π Γ

(
p− 1

2

)
2 Γ2

(
p+1
2

) ] (21)
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p

−0.5
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〈n
t/
r〉 λi = λj

Nf = 1

Nf →∞
Numer.

FIG. 1. The multifield prediction from Eq. (21) compared to
the numerical mean 〈nt/r〉 of simulations with 5000 samples,
at each plotted value of p, with Nf = 1000 using the horizon-
crossing approximation. The field values φi,∗ as the pivot
scale k∗ leaves the horizon are drawn from a uniform prior on
the surface in Eq. (3) and all the couplings λi are identical.

and a standard deviation proportional to

snt/r ∝
1√
Nf
→ 0 as Nf →∞, (22)

which can be found by substituting the means, variances,
and correlations of Eq. (10) into Eq. (19).

The first bracketed term in Eq. (21) is the single-field
prediction, the second is due to the couplings λi, and the
third arises from the uniform prior for φi,∗ on the horizon-
crossing surface. This last term is due only to the spread
in the field values at horizon crossing and is independent
of everything except p. The functional form of this term
is fixed by the uniform prior distribution on the horizon
crossing surface, but other prior probabilities for φi,∗ re-
sult in qualitatively similar behavior as demonstrated in
Ref. [36]. As Eq. (22) vanishes in the many-field limit,
Eq. (21) is the generic multifield prediction, which devi-
ates from the single-field result at > 5σ for Nf & O(102)
for typical P (λ).

Consequently, even if
〈
λ2
〉

= 〈λ〉2, Nf -monomial mod-
els do not predict nt/r = −1/8, unless the φi,∗ are also
identical. Fig. 1 compares the predicted value for 〈nt/r〉
in Eq. (21), with all λi equal, to numerical results ob-
tained by directly evaluating nt/r with Eq. (7), showing
excellent agreement for many fields. The divergence at
p = 1/2 reflects the fact that

〈
|x|2p−2

〉
→ ∞. Thus,

when p ≤ 1/2, 〈nt/r〉 may be arbitrarily large, which
violates the slow-roll assumption. Consequently, these
models are most easily distinguished from their single
field analogues, but the hardest to make accurate predic-
tions for.

Specific examples— To understand how the mean
〈nt/r〉 in Eq. (21) is affected by P (λ) we compare two
explicit priors that are widely used in Bayesian analyses
of inflation [4, 43–46]. We focus on the p = 2 case, since
the dependence on the prior on φi,∗ in Eq. (21) cancels
for this scenario.
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−0.18 −0.16 −0.14

nt/r

−0.17 −0.16 −0.15 −0.14

nt/r

FIG. 2. Predicted probability distributions for nt/r with
p = 2 compared with histograms built from 10000 numerical
samples. The couplings λi are drawn from the Uniform Model
with (left) Nf = 20 and (right) Nf = 100. For Nf . O(102),
the distribution is skewed toward positive values as predicted.

We look at two cases: uniform prior probabilities over
λi or αi for λi ≡ 10αi , which we denote the Uniform
Model and Log Model, respectively. The Uniform Model
would be applicable when the relevant scale of λi is
known to within an order of magnitude, while the Log
Model effectively scans over a range of physical scales.

For the Uniform Model, the λi are drawn from U [a, b],
and Eq. (21) becomes(nt

r

)unif
p=2

= −1

6

[
b2 + ab+ a2

(b+ a)2

]
. (23)

For λi ∈ [10−14, 10−13], as Nf → ∞ the predicted cor-
relation coefficient for fratio(nt/r) is γ ≈ −0.98 and
〈nt/r〉 = −0.153. We plot fratio and the results of 10000
numerical realizations using the HCA in Fig. 2. We find
excellent agreement with Eq. (23), with fratio accurately
capturing the higher order moments of the nt/r distri-
bution for Nf & 20. For p = {3/2, 2, 3} the single-field
result nt/r = −1/8 is a 5σ deviation from the mean in
Eq. (23) for Nf & {120, 120, 200}, respectively.

For the Log Model with α ∼ U [a, b],(nt
r

)log
p=2

= − log(10)(b− a)

16

[
10b + 10a

10b − 10a

]
. (24)

If a → b, we recover the single-field result in both
Eqs. (23) and (24). However, Eq. (24) diverges as
a → −∞, reflecting the failure of slow-roll in the limit
of widely separated scales. For α ∈ [−14,−12] the Log
Model predicts Pζ ∼ O(10−9), ε . 0.03, γ ≈ −0.95
and nt/r = −0.294. For p = {3/2, 2, 3} the single-field
result is a 5σ deviation from the mean in Eq. (24) for
Nf & {145, 135, 255}, respectively.

Relaxing the approximations— Fig. 3 compares
the HCA prediction to numerical results that include the
contribution from the end-of-inflation surface in Eq. (3),
with φi,c 6= 0. We numerically solve the background
Klein-Gordon equations for 1000 realizations, finding the
field values at the end of inflation (defined by ε = 1) and
obtaining the full δN prediction without using the HCA.
Fig. 3 also incorporates both the sub-horizon evolution
of the modes and any non–slow-roll behavior by solving

20 40 60 80 100

Nf

−0.20

−0.18

−0.16

−0.14

−0.12

n
t/
r

Nf = 1

Nf →∞

FIG. 3. The consistency relation for the Uniform Model with
p = 2 is plotted for different Nf , marginalizing over initial
field values. The boxes/whiskers cover the 50/97% CIs and
the gray regions delineate the same ranges as predicted by
the HCA and the central limit theorem. The (dashed) brown
and (solid) gray lines are the single-field and the many-field
HCA predictions, respectively. For each case we present re-
sults derived from full numerical solutions to the mode equa-
tions (blue/left), the slow-roll prediction using the HCA (yel-
low/center), and the slow-roll prediction including the end-
of-inflation surface (red/right) for Nf = 20, 60, and 100.

the mode equations numerically, as in Refs. [36, 47], us-
ing MultiModeCode [48]. Results are plotted for the
Uniform Model, with the ranges λi ∈ [10−14, 10−13] and
p = 2.

In all cases the numerical results are well-approximated
by the HCA. The HCA results are marginally larger than
the numerical results, which we attribute to second-order
corrections to the slow-roll equations; nt = −2ε/(1 − ε),
which suppresses nt relative to the first-order approxi-
mation. The variances in the numerical results scale as
σ2 ∝ 1/

√
Nf , as predicted by the HCA results, confirm-

ing that many-field models make sharp predictions for
nt/r.

Conclusion— We have computed the probability dis-
tribution for the consistency relation nt/r for inflation
driven by multiple scalar fields with monomial potential
terms, as a function of the distribution of couplings and
initial field values. The single-field result is clearly dis-
tinguishable from the many-field limit, providing a clean
and compelling signature that distinguishes these mod-
els from their single-field analogues. Other than for the
quadratic case, this result holds even when the couplings
are identical.

We focused on computing the slow roll parameter ε,
but the nature of the slow-roll hierarchy [49] indicates
that this approach will generalize to a variety of observ-
ables, so quantities such as fNL that rely on the second
and higher slow-roll parameters should also have precise
predictions that deviate from the single-field expectation
even when the couplings are degenerate. This provides
a further compelling example of a multifield scenario in
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which the observables have a sharp and generic predic-
tion in the many-field limit [32, 34–36, 40, 41, 50–57].

The expected value 〈nt/r〉 depends on only two mo-
ments of the prior probability distributions P (λ) and
P (φ0), and the corresponding variance is s2nt/r

∝ 1/Nf .

The single-field expectation of nt/r = −1/8 differs from
the multifield result at the 5σ level when Nf & O(102).
Consequently, given specific priors for the field values
and couplings, we obtain generic and testable predictions
for the consistency relations in this large and interesting
class of multifield inflation models.
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