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Abstract: This work refines arguments forbidding non-linear dynamical gravity from

appearing in the low energy effective description of field theories with local kinematics,

even for those with instantaneous long-range interactions. Specifically, we note that

gravitational theories with universal coupling to energy – an intrinsically non-linear

phenomenon – are characterized by Hamiltonians that are pure boundary terms on shell.

In order for this to be the low energy effective description of a field theory with local

kinematics, all bulk dynamics must be frozen and thus irrelevant to the construction.

The result applies to theories defined either on a lattice or in the continuum, and

requires neither Lorentz-invariance nor translation-invariance.
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1 Introduction

Attempts to directly quantize the gravitational field encounter well-known difficulties

associated with lack of perturbative renormalizeability, the black hole information prob-

lem, and the lack of local observables due to invariance under diffeomorphism gauge

symmetry (which, from the active point of view, moves spacetime points from one

location to another). While it remains possible that any or all of these issues may

one day be surmounted, it is nevertheless interesting to ask whether diffeomorphism-

invariant gravity – sometimes called background-independent gravity – might emerge

an effective approximate description of a system that is inherently better behaved at

the microscopic level.

Most leading approaches to quantum gravity embody ideas along these lines. String

theory, loop quantum gravity, causal sets [1], and causal dynamical triangulations [2]

(see e.g. [3] for a recent overview) all propose that smooth classical geometries arise

only in appropriate semiclassical limits.1 But the structures underlying these theories

again involve novel physics that is difficult to control. So it is natural to ask if gravity

can arise from more familiar systems such as field theories with local kinematics. Exam-

ples of such proposals include [6–22]. Below, we argue that such scenarios can succeed

only if the map to gravitational degrees of freedom involves long-range non-locality;

i.e., only if the notions of locality are very different in the two descriptions. We em-

phasize that we focus here on whether gravitational theories with an appropriate form

of diffeomorphism-invariance (or what is often called independence from background

structures) can emerge as effective descriptions of theories built on familiar background

structures such as fixed (non-dynamical) spacetime lattices or smooth spacetimes with

a metric; we make no comment on the possible emergence of general relativity from

1Asymptotic safety is the most prominent exception; see e.g. [4, 5] for recent reviews.
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discrete theories of quantum gravity, or on scenarios such as in [23, 24] where the entire

notion of time-evolution is itself emergent.

As has been well-known for some time, the (spin-2) Weinberg-Witten theorem [25]

already excludes the emergence of gravity from local Poincaré-invariant field theories.

In particular, it forbids such theories from containing an interacting massless spin-

2 degree of freedom in its spectrum of asymptotic states. While clear and concise,

the technical assumption of Poincaré-invariance appears to leave open many doors for

exploration. For example, one might attempt to evade the theorem by working on

a lattice as in e.g. [9, 15, 16, 19, 20], or by using other structures that break this

symmetry.

However, as noted in e.g. [26, 27], the lack of local observables in quantum gravity

suggests a more general result forbidding diffeomorphism-invariant gravity arising as the

effective description of any theory with sufficiently interesting local observables. Our

purpose here is to make this precise. Since any theory can be made diffeomorphism-

invariant via a process known as parametrization (see e.g. [28, 29, 29–37]), we follow [38]

in using the gravitational Gauss law to distinguish theories with sufficiently ‘interesting’

diffeomorphism-invariance. The desired theories roughly correspond to what are often

called “background-independent” theories of gravity.

Before stating our technical result in section 2 below, let us therefore take a moment

to explain this idea in broadly accessible terms. We first recall that (non-relativistic)

Newtonian gravity can be formulated in terms of a gravitational potential φ that sat-

isfies a Poisson equation ∇2φ = 4πGρM sourced by the mass-density ρM . As a result,

the total mass M =
∫
V
ρM dV inside a volume V (with volume element dV ) can be

expressed as the boundary term M = 1

4πG

∫
∂V

dS ni∂iφ where ∂i =
∂

∂xi denotes deriva-

tives with respect to spatial coordinates xi, ni is the unit (outward-pointing) normal

to the boundary ∂V , and dS is the area element on ∂V . This is just the Newtonian

gravity analogue of Gauss’ Law from electrostatics. Now, in relativistic theories, the

gravitational field couples not just to mass, but to all forms of energy. As a result, in

the presence of appropriate boundary conditions one finds a corresponding Gauss-law-

like boundary integral that encodes the total energy E; see e.g. [39] for a recent review.

This Gauss-law for energy will turn out to be the critical feature that forbids the the-

ory from arising as an effective description; the full Lorentz-invariance that originally

motivated the coupling to energy is not required2. It is useful to mention here that the

2Lorentz-violating theories that couple universally to energy may be constructed in analogy with

Hořava-Lifhshitz gravity [40], interchanging the roles of space and time and replacing the extrinsic

curvature of a preferred foliation with the proper acceleration of a preferred family of worldlines. The

Einstein-Aether theory [41, 42] also has universal coupling and, at low energies, might be considered

to violate Lorentz-invariance.
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Gauss-law property is inherently non-linear due to the fact that the energy source term

also receives contributions from the gravitational field. As a result, in parallel with the

Weinberg-Witten theorem [25], our arguments place no constraints on the emergence

of strictly linear spin-2 degrees of freedom.

As we explain below, the Gauss-law property will imply that gravity can be a good

effective description of a theory with local kinematics3 only in limits where the bulk

dynamics freezes out away from the boundary. While there is nothing wrong with

such freeze out in an of itself4, an interesting effective gravitational description should

remain non-trivial in the bulk of the spacetime. Consistency then requires that bulk

gravitational physics be the effective description of purely boundary dynamics in the

original theory. Modulo anomalies, the original bulk theory served no purpose in the

construction and may be discarded. As a result, the notions of bulk vs. boundary

are completely different in the original kinematically-local theory and the effective

gravitational description. This is the requisite non-locality referred to in the title.

The reader will note that it also describes a paradigm embodied in string theory by

gauge/gravity duality (e.g. [43, 44]).

2 Definitions and Results

We begin the technical treatment by making two definitions that will allow us to sharply

state our result. Each definition is followed by comments to provide clarity. Discussion

of the main result will appear in section 3.

Definition I. A gravitational theory with universal coupling to energy is one for which,

in the presence of any boundary conditions for which a Hamiltonian exists, the total

energy can be written as the integral over the boundary of space at each time of some

local function of the gravitational field and its derivatives. Below, we refer to the inte-

grand of this boundary integral as the gravitational flux. We require the gravitational

flux to be an observable (i.e., it is invariant under gauge transformations allowed by

the given boundary conditions).

We now make several remarks to clarify this definition. See e.g. [39] for any definitions

and for further discussion of the examples below. We will use the term Riemann-

curvature gravity theories to refer to Einstein-Hilbert gravity together with its higher-

derivative generalizations described by Lagrangians that are local scalar functions of

the Riemann tensor and its derivatives.
3The dynamics is required to be local in time and generated by a Hamiltonian. However, the

Hamiltonian can be non-local in space. We explicitly allow instantaneous long-range interactions.
4There are of course many theories where bulk excitations are gapped at low energy.
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1. Gravitational Field: Note that we have not specified any particular variables

in terms of which this field is to be expressed; our discussion is thus invariant

under local field redefinitions and is not restricted to metric theories.

2. Simultaneity: The phrasing implies that the spacetime boundary admits a no-

tion of “each time;” i.e., of which points on the boundary are simultaneous. This

notion need not be unique; e.g., for Riemann-curvature gravity with either anti-de

Sitter boundary conditions or Dirichlet boundary conditions at a finite wall, any

time-function on the boundary may be used to define simultaneity so long as all

pairs of points on its level surfaces are spacelike separated. The notion of simul-

taneity is also allowed to be trivial as in asymptotically flat Riemann-curvature

gravity where the boundary of space should be interpreted as spacelike infinity

(i0) and, in the usual representation, all points at spacelike infinity are simulta-

neous. Indeed, the entire notion of “boundary of space” can be trivial so long as

the total energy vanishes identically in such cases; Riemann-curvature gravity for

closed cosmologies provides an example.

3. Total Energy: This quantity is defined to be the generator of (asymptotic)

time-evolution; i.e., it is the Hamiltonian. This time evolution need not be a

symmetry, so the Hamiltonian may have explicit time-dependence.

4. Observable Gravitational Flux: We remind the reader that the gravitational

flux at the boundary is indeed gauge-invariant in Riemann-curvature gravity since

it can be defined as the variation of the action (see e.g. [45–49]) with respect to

boundary conditions (which are by definition gauge-invariant). It may also useful

to mention that, while often not presented in this form, in Einstein-Hilbert gravity

with asymptotically flat [50] or asymptotically AdS boundary conditions [51, 52]

the gravitational flux may be written in terms of the Weyl tensor at the boundary.

In this form it more closely resembles the familiar electric flux computed from

the field strength of a vector gauge field.

5. Heuristics, examples, and contrasting theories: The idea behind calling

the above property “universal coupling to energy” is that there is an aspect of

the gravitational field (namely the above boundary integral) which directly gives

the total energy of the system. Any Riemann-curvature theory satisfies this

definition (see e.g. [53]). In contrast, scalar (Nordstrom) gravity, Hořava-Lifshitz

gravity [40], and massive gravity theories (see e.g. [54] for a recent review) do

not have universal coupling to energy in this sense; none of these theories have
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a Gauss law5. We will not discuss such theories further except that to note that

their behavior is generally rather distinct [57–59] from theories with universal

coupling, and that Nordstrom gravity does appear to emerge from the dynamics

of Bose-Einstein condensates [60].

Definition II. Whether defined in the continuum or on a spatial or space-time lattice,

a theory will be said to be kinematically local iff the commutator of two gauge-invariant

local Heisenberg-picture operators (with at least one bosonic) vanishes when evaluated

at different spatial locations at a common time. We also assume that time-evolution is

generated by some Hamiltonian.

We again provide clarifying comments below

1. Simultaneity: We require the theory to have a concept of bulk simultaneity

(i.e., when two spacetime events occur at the same time). We assume this to be

a background structure independent of dynamical fields. As above, this notion

need not be unique; i.e., in a relativistic theory it will suffice to choose any time-

function that is constant on spacelike surfaces6. So any theory built in the usual

local way from scalar, spinor, or vector fields in local in this sense.

2. Heisenberg Picture: We assume the existence of a Heisenberg picture, in which

gauge-invariant operators at each position ~x satisfy −i~ ∂

∂t
O(~x, t) = [H(t),O(~x, t)]

for some (perhaps time-dependent) Hamiltonian H(t). In this sense the dynamics

is local in time, though H(t) may be arbitrarily non-local in space. In particular,

instantaneous long-range interactions are allowed. So long as the commutation

relations satisfy definition II at some initial time, any unitary evolution ensures

that they continue to hold at all other times.

3. Bosonic Operators: It is sufficient for our purposes to define gauge-invariant

operators to be bosonic when they commute with all local gauge-invariant oper-

ators located at different positions in space at the same time. While we referred

to local operators above, in a lattice theory it is natural to also consider bosonic

operators B built from multiple nearby lattice sites; e.g., the product of two free

5 An alternative definition of Hořava-Lifshitz gravity can be given by imposing a hypersurface-

orthogonality constraint on the aether field of the Einstein-aether theory [55]. This formulation inherits

the Gauss law equation of motion of the Einstein-aether theory. But it is now second-class in the sense

of Dirac [56]. This requires the commutators to be modified as in [56] so that the resulting theory is

no longer kinematically local in the sense of Definition II. This illustrates that Definitions I and II are

most meaningful when considered together.
6By which we mean that there is no causal connection between any two points on the surface.
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fermions at adjacent sites may be considered a local bosonic operator. In that

case we require it to commute with all operators whose support does not contain

the lattice sites from which our operator B was built.

Combining the above definitions leads quickly to the desired result. We begin by

assuming the theory with local kinematics to admit some limit where it is effectively

described by a gravitational theory with universal coupling to energy. We take this to

mean that notions of time-evolution embodied by the above two definitions coincide.

The time evolution of the local theory is then generated by a Hamiltonian, which by

definition I can be written as an integral over the boundary gravitational flux.

There is in principle some change of variables that writes this boundary integral in

terms of variables in the original local theory. Since the gravitational flux is a (gauge-

invariant) bosonic observable at the boundary of the gravity theory, we assume that

the result in the kinematically local theory is again the integral of a bosonic gauge-

invariant operator supported only on (or near) the boundary. Failure of this property

to hold would mean that the two theories have radically different notions of bulk vs.

boundary; we therefore refer to the above property as the assumption that the two

theories have compatible notions of locality. But having expressed the Hamiltonian

in terms of boundary operators in the local theory, it must commute with all local

observables in the interior. So interior local observables must be time-independent in

the limit where the effective gravitational description applies; i.e., the local interior

dynamics has become frozen. We restate this conclusion as the following theorem.

Theorem: Consider any limit where the effective description of a local theory is a

gravitational theory with universal coupling to energy, the same notion of time evo-

lution, and a compatible definition of locality. In this limit all local observables away

from the boundary become independent of time.

3 Discussion

We have seen that all bulk dynamics must freeze out in any limit where a kinematically-

local theory develops an effective gravitational description (and where this gravitational

field couples universally to energy, maintains the same notion of time evolution, and

contains a compatible definition of locality). We emphasize that only the kinematics

need be local for this conclusion to hold. While our definition of kinematic locality

requires Hamiltonian evolution, the Hamiltonian may contain instantaneous long-range

interactions. The form of the commutation relations is preserved by any unitary notion

of time-evolution.
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As remarked in the introduction, there is no inherent contradiction in this freeze out

on its own. After all, gapped theories are quite common. But an interesting effective

gravitational description should remain non-trivial in the bulk of the spacetime, which

then requires that its notion of the bulk/boundary distinction be rather different than

that of the original kinematically-local theory. This constitutes a certain non-locality

intrinsic to the process of emergence – beyond any non-locality already present in the

original dynamics – and is similar to what occurs in string theoretic gauge/gravity

duality (e.g. [43, 44]). Indeed, modulo anomalies we may imagine discarding the

original bulk and obtaining the gravity theory directly from degrees of freedom at the

boundary.

Since partial motivation for this work came from the (gravitational) Weinberg-

Witten theorem [25], one may recall that Weinberg-Witten has a useful analogue for

U(1) vector fields. The corresponding analogue of our result is far less interesting. It

states simply that all local operators remaining in the limit where the effective U(1)

vector description applies must be uncharged.

Returning to the gravitational context, it is clear that the consequences of our

theorem can be avoided by introducing a priori kinematic non-localities violating our

assumptions. The gauge/gravity dualities of string theory are examples of this strategy.

Indeed, any (Hamiltonian) quantum theory of gravity defined on a separable Hilbert

space is completely equivalent to some local field theory – and in fact to a quantum

mechanical theory describing a single particle in one dimension – via a sufficiently non-

local map. One simply uses the fact that all separable Hilbert spaces are isomorphic to

transcribe the Hamiltonian to the Hilbert space of a single non-relativistic particle. As

a 0+1-dimensional field theory the result trivially satisfies definition II. The dynamics

are also local in time, though when written (perhaps only formally) in terms of the usual

position and momentum operators the Hamiltonian need not bear any resemblance to

standard energy functions of Newtonian mechanics.

Of course, the above construct requires one to first know the exact spectrum of

the gravitational Hamiltonian. This is tantamount to solving the theory. And any

construction which first the theory to be solved will be of very limited use. Allowing

the map between theories to be arbitrary non-locality thus seems unproductive. Again,

stringy gauge/gravity duality represents a sort of happy medium with enough non-

locality to evade our theorem and enough structure to remain useful.

One might also ask if gravity could be the effective description (via a more local

change of variables) of a theory with some special type of kinematic non-locality over

which one might hope to have more control. Non-commutative gauge theories [61] are a

natural first category to consider. Since these theories lack local observables, there is no

immediate direct transcription to this context of our theorem above. But closely related

– 7 –



reasoning indicates failure here as well. In particular, recall that non-commutative

gauge theories can be defined on compact spaces with translational symmetry (e.g., tori)

where they continue to admit gauge-invariant observables with non-zero momentum

[62]. Recall also that, like energy, momentum is a source for (other components of) the

gravitational field and admits a similar Gauss-law expression as a boundary integral in

standard gravitational theories. This motivates a definition of “universal coupling to

momentum” in analogy with our definition I above. In theories with this property the

total momentum must vanish on spatially compact manifolds, and operators with non-

zero momentum cannot be gauge invariant. But restricting the non-commutative theory

to zero-momentum operators is comparable to freezing out bulk degrees of freedom in

a local field theory [63], so this approach seems similarly unproductive.

In closing, we remark that the momentum version of the argument in the above

paragraph also constrains the emergence of Hořava-Lifshitz gravity [40], which couples

universally to momentum but not to energy (though see footnote 5). Again, this

universal coupling is an intrinsically non-linear phenomenon. Thus the linearized theory

is free to appear in an effective description as found in [15, 16, 19, 20].
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