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The large scale behaviour of a population of cells that grow and interact through the concentration
field of the chemicals they secrete is studied using dynamical renormalization group methods. The
combination of the effective long-range chemotactic interaction and lack of number conservation
leads to a rich variety of phase behaviour in the system, which includes a sharp transition from a
phase that has moderate (or controlled) growth and regulated chemical interactions to a phase with
strong (or uncontrolled) growth and no chemical interactions. The transition point has nontrivial
critical exponents. Our results might help shed light on the interplay between chemical signalling
and growth in tissues and colonies, and in particular on the challenging problem of cancer metastasis.
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Chemotactic cell motility has attracted a lot of interest
in biology and medical research, as it plays an essential
role in cancer metastasis [1], leukocyte extravasation, an-
giogenesis, wound healing and embryogenesis [2], through
signalling that involves various molecules (e.g. growth
factors) and is mediated by the extracellular matrix [3].
Bacteria such as E. coli [4] have developed an efficient
run-and-tumble search strategy for the needed chemicals
[5] by coupling sensing of the chemicals—that is accen-
tuated through an elaborate clustering mechanism for
the protein receptors [6]—to the motility machinery via
signalling pathways that have a feedback control on the
preferred direction of the rotation of the flagellar motors
[7, 8]. The situation is more complex with eukaryotic
chemotaxis, where the motility mechanisms are typically
much more elaborate, e.g. involving actin polymerization
or coordinated motion of thousands of molecular motors
[9]. On a more coarse-grained level, however, the re-
sulting motion can be phenomenologically modelled as
a directed mobility towards (away from) increasing con-
centrations of molecules that act as chemo-attractant (-
repellant) [10]. This level of description has been suc-
cessfully used to study a variety of interesting effects in
bacterial behaviour such as auto-chemotaxis, where sin-
gle bacteria are influenced by their own chemotactic field
[11–13], and collective behaviour of bacteria caused by
the chemical interactions, such as the chemotactic col-
lapse [10, 14, 15] and other forms of nonequilibrium pat-
tern formation [16, 17]. Similar behaviours have been dis-
cussed for active colloids that communicate via the same
type of long-range interactions [18–21]. Coarse-grained
theories for active systems have been shown to apply to
a whole variety of—seemingly unrelated—collective phe-
nomena in biology such as flocks of birds, schools of fish,
aggregations of molecular motors, and dynamic reorga-
nization of growing tissues [22–32].

One of the characteristic features of the long-time dy-
namics of living cells is that number conservation does
not hold due to cell division and death processes, which
has consequences on their collective behaviour [31]. The

combined effect of this nonequilibrium property of a
colony of living cells—that we model using a generic
growth rule [33]—and long-range chemotactic interac-
tions among the cells is what we aim to study in this
Letter. The schematics of the model is shown in Fig. 1.
We show that in the relevant continuum description for
long-time and large-scale behaviour of such a colony of
cells, which we study using dynamical renormalization
group (RG) methods, the two nonlinear terms represent-
ing the cell division process and chemotaxis appear at
the same degree of relevance. The competition between
them leads to a sharp transition from a phase that is
controlled by a weakly coupled perturbatively accessible
fixed point to a phase controlled by a nonaccessible strong
coupling fixed point. The weakly coupled fixed point has
well defined values for the strength of the chemical inter-
action and the growth rate. At the strong coupling fixed
point, the chemical interaction becomes much less signif-
icant in competition with growth, which will collectively
exhibit much larger effective rates. The weakly coupled
fixed point itself corresponds to a modified chemotactic
collapse transition: when the strength of the chemotac-
tic attraction is larger than a threshold that depends on
the growth rate, the cells are strongly attracted towards
each other and collapse into a dense structure, while for
smaller values of the chemotactic coupling the cells are
dispersed into a dilute solution since the chemical at-
traction is not enough to overcome the diffusion. At the
perturbatively accessible fixed-point, we are able to cal-
culate critical exponents that describe a continuous phase
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FIG. 1: Schematics of the model, showing (a) the interaction
between the cells via a long-range field of emitted chemicals,
and (b) the cell division (and death) process.
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FIG. 2: Properties of the fixed point and the accompanying
dynamical phase transition. (a) The flow around the fixed
point in (ν1, ν2) space. (b) The two parameter regions for
ν1, ν2 for different dimensions. Above the separatrix (dashed
line), a perturbatively not accessible fixed point will control
the flow, whereas below it the flow will converge to the stable
fixed point. The solid line represents the critical point that
corresponds to the phase transition, and can be experimen-
tally approach by tuning any of the parameters involved, e.g.
the growth rate or the rate of release of the chemicals.

transition. We find that the cells exhibit superdiffusive
motion at the dynamical critical point, where the mean-
square displacement of the cells behaves as tα, where e.g.
α = 1.72 in two dimensions.

We consider single cells that release chemicals and
thus create a long-range concentration field φ(r, t) around
them. Other cells in the suspension will then swim to-
wards or away from the mobile chemical sources, depend-
ing on the type of cells and chemicals. Here we will as-
sume that the response of the cells is linear with respect
to the concentration gradient, such that a concentration
field effectively acts as an interaction potential that leads
to an effective drift. In a dissipative environment where
inertial effects are negligible, the equation of motion for
a single cell i then reads ∂tri = −µ ∇φ|

r=ri(t)
plus Brow-

nian noise. Here, µ is the mobility of a cell that can be
positive or negative, depending on whether the cells re-
pel or attract each other (unit of µ: [length]2+d/[time]

in d dimensions). φ obeys the diffusion equation with a
source term given by the density of the cells C(r, t) =
∑

i δ (r− ri(t)). Since we are interested in the long-time
behaviour of the system, we can assume that φ rapidly
adapts to changes in C(r, t). In this case the potential
φ is Coulomb-like, namely, −∇2φ = α0C(r, t), where α0

determines the rate of release of chemicals (unit of α0:
[length]−2). From these equations one can derive the
stochastic equation for the exact density following Dean’s
approach in Ref. [34], which reads ∂tC = D∇2C + µ∇ ·
(C∇φ)+∇·

[√
2DC f(r, t)

]

, where f is a Gaussian white

noise: 〈fα(r, t)fβ(r′, t′)〉 = δαβδ(r − r
′)δ(t − t′). Note

that this Langevin equation for the density is exact and
contains the same information as the N -body stochas-
tic Langevin equations [34, 35]. Moreover, using phe-
nomenological arguments, one can use the same scheme
for a continuous coarse-grained density C(r, t) even when
it cannot be described exactly as a sum of δ-functions,
while keeping track of the fluctuations [35].
We now extend the model phenomenologically by

adding a source term L(C) that describes cell division
and death and a noise g(r, t) that breaks the cell number
conservation:

∂tC = D∇2C + µ∇ · (C∇φ) +∇ ·
[√

2DC f(r, t)
]

+L(C) +
√

2M(C) g(r, t), (1)

where 〈g(r, t)g(r′, t′)〉 = δ(r − r
′)δ(t − t′). We choose

the logistic growth rule that corresponds to L(C) =
λC(C0 − C) [33], where C0 is the carrying capacity,
and λ is an effective growth rate per unit concentra-
tion (unit of λ: [length]d/[time]). However, all our re-
sults are valid for any generic form for L(C) provided
L(C0) = 0 and L′(C)|C0

< 0 [31], since higher order
terms in an expansion of the growth term renormalize
to zero under RG. The strength of the nonequilibrium
noise corresponding to number fluctuations, M(C), is in
general a function of the concentration and can be de-
rived for any given form of the growth rule (unit of M :
[time]−1× [length]−d) [36]. For example, using a stochas-
tic growth and coagulation process, one can derive the
expression M(C) = λC(C0 + C)/2 [37].
To simplify the multiplicative noise term, we assume

that the density fluctuates around a constant background
of C0; hence, we define the density via C(r, t) = C0 +
ρ(r, t) and expand in ρ/C0 up to the lowest order non-
linearity. Then the equation for the density fluctuations
becomes

∂tρ = D∇2ρ− θρ− ν1∇ ·
[

ρ∇
(

1

∇2

)

ρ

]

− ν2
2
ρ2 + η, (2)

where 1
∇2 is defined as the inverse Laplacian in Fourier

space and the noise correlator in Fourier space is given as
〈η(k, ω)η(k′, ω′)〉 = 2

[

D0 +D2k
2
]

(2π)d+1δ(k+k
′)δ(ω+

ω′). The bare parameters are related to the physical
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FIG. 3: One-loop diagrams (a) for the response function G(k̂),
(b) the noise correlator D(k), and (c) the Vertex function, in

terms of the bare quantities defined in (d), namely G0(k̂) =

[iω +Dk2 + θ]−1 and D0(k) = D0 +D2k
2, where k̂ := (k, ω).

characteristics of the system (introduced above) as fol-
lows: νbare1 = µα0, νbare2 = 2λ, θbare = (µα0 + λ)C0,
Dbare

0 = λC2
0 , and Dbare

2 = DC0. Ignoring the nonlinear-
ities, Eq. (2) tells us that the uniform density phase is
stable for θ > 0, and signals a clumping instability that
corresponds to chemotactic collapse at θ = 0, which cor-
responds to a new threshold of µ < λ/α0 for chemotactic
collapse for dividing cells, as opposed to µ = 0 [10]. The
properties of the system at the phase transition could
be studied by implementing a perturbative treatment of
the nonlinear terms within a dynamical RG formulation
[38, 39].
The underlying assumption of RG calculations is in-

variance of Eq. (2) under rescaling space (r → eℓr) and

time (t → eℓzt) close to a critical point. The cell den-
sity fluctuations will in this case transform as ρ → eℓχρ.
The coarse-graining associated with the rescaling leads
to corrections to the bare quantities in the Green func-
tion, noise correlator and the three-point function, which
can be found by integrating out short-range degrees of
freedom. The Feynman diagrams in Fig. 3 provide
a graphical representation of the lowest-order pertur-
bative corrections to the bare quantities [37]. Coarse-
graining corresponds to evaluating the (wavevector) in-
tegrals from Λe−ℓ to Λ to eliminate large wavenumbers,
where Λ = 2π/a is an upper cutoff in Fourier space and
thus inversely proportional to a microscopic lengthscale
a, which is set by the size of the cells.

We note that the cells will typically also experience
short-range interactions, for example from excluded-
volume effects. However, these interactions are irrelevant
in RG sense as compared to the Coulomb-like interac-
tions. To see this, consider adding to Eq. (1) a term of
the form ξ∇(C∇Ψ) with Ψ =

∫

ddr0C(r0, t)G(r−r0)) to
account for short-range interactions (

∫

G(r)dr = const.).
This term will scale as b2χ−2, while the long-range inter-
action term scales as b2χ. Therefore, we can ignore the
short-range interactions for the purpose of studying the
critical properties of the system.

Following the standard procedure briefly described
above [38, 39], we obtain the following RG flow equa-
tions for the coupling constants:

dθ

dℓ
= zθ − ν2KdΛ

d−4

2D2

{

D0

[

(3 + 2/d)ν1 + 2ν2

]

+ 3ν1D2Λ
2
}

, (3a)

dν1
dℓ

= ν1

{

χ+ z +
ν2πKdΛ

d−6

4D3

[

3ν1 + 2ν2

]

(D0 +D2Λ
2)

}

, (3b)

dν2
dℓ

= ν2

{

χ+ z +
πKdΛ

d−6

D3

[

3ν1 + 2ν2

][

ν1 + ν2

]

(D0 +D2Λ
2)

}

, (3c)

dD

dℓ
= D

(

z − 2− KdΛ
d−6

8D3

{

(2d− 4)

d
D2Λ

2
[

3ν1 − 2ν2

][

2ν1 + ν2

]

+ 4D0ν2

[ (17− 5d)

d
ν1 + 2ν2

]

})

, (3d)

dD0

dℓ
= D0(z − d− 2χ) +

ν22KdΛ
d−6

2D3
(D0 +D2Λ

2)2, (3e)

dD2

dℓ
= D2(z − d− 2− 2χ)− ν2KdΛ

d−8

8dD3

{

7ν1

[

D2
0 +

(8d− 2)

7
D0D2Λ

2 +D2
2Λ

4
]

+ ν2(D0 +D2Λ
2)
[

(3d− 14)D0 + (d− 2)D2Λ
2
]}

,

(3f)

where Kd = Sd/(2π)
d and Sd = 2πd/2/Γ(d/2) is the area of unit sphere in d dimensions.

Scale invariance at the critical point requires that the
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FIG. 4: (a) The fixed-point is stable in the space of equilib-
rium and nonequilibrium noises for d ≤ 4. (b) The values
for the exponents z and χ corresponding to the stable fixed
point. For d = (1, 2, 3) dimensions, the values are reported in
Table I.

values of the coupling constants in Eq. (2) remain fixed
under RG flow. This condition gives a nontrivial fixed
point [see Fig. 2(a)] corresponding to fixed point val-
ues ν∗1 = −3

√

D3(χ+ z)/ [πKd(D0 +D2Λ2)] and ν∗2 =
− 4

3ν
∗
1 , indicating that both chemotaxis and cell growth

are relevant for the collective dynamics of cells at the
collapse transition. Around the fixed point, we find a
flow depicted in Fig. 2(a). Starting with ν1 and ν2 be-
low a dimension-dependent threshold value indicated by
a separatrix in Fig. 2(a), the flow will go towards ν∗1 and
ν∗2 . Above the threshold, however, the system will be
controlled by a perturbatively non-accessible fixed point
with runaway behaviour. Runaway flows have been com-
monly associated with first-order transitions [42] but this
is not guaranteed unless the flow goes to a region where
a first order transition can be established using a mean-
field approximation [43]. Here, the flow will move the
system to a region where noise and growth dominate
and chemotaxis is irrelevant. Thus, above the thresh-
old, Eq. (2) will belong to the class of Fisher equa-
tions, which are known to exhibit instabilities, nonlin-
ear fronts and chaos [44–46]. To decide on the nature
of the phase transition, an analysis of the Fisher-type
equation under consideration of short-range interactions
is needed. Below the threshold we also find that the fixed
point value of the tuning parameter is renormalized as

θ∗ = − 2D
π Λ2

(

χ+z
z

)

[

1 + 6
d

D0

D0+D2Λ2

]

. Hence, the system

will be controlled by the nontrivial fixed point if the bare
values of the nonlinear terms correspond to the basin of
attraction of the fixed point and we tune θ to its fixed
point value. Combining these conditions with the depen-
dence of the bare coupling constants on the known micro-
scopic parameters of the system (see above), yields the
phase diagram that is depicted in Fig. 2(b) for different
dimensions d. The flow equations for the noise strengths
D0 andD2 lead to a (perturbatively accessible) nontrivial
stable fixed point in the physically relevant dimensions

TABLE I: This table summarizes the critical exponents found
at the critical fixed point.

d = 1 d = 2 d = 3

z −0.60 1.16 1.90

χ 0.91 −0.95 −1.75

α = 2/z −3.33 1.72 1.05

β = d+ χ 1.91 1.05 1.25

(d ≤ 4) as shown in Fig. 4(a). The fixed point has both
equilibrium and nonequilibrium components, highlight-
ing that even a starting point with a bare value for noise
that has no nonequilibrium component, i.e. G = 0, this
type of noise will be generated through the RG process.

Figure 4(b) shows the values for the exponents z
and χ, which are numerically exact within this order
of perturbation theory, and the values for dimensions
d = (1, 2, 3) are tabulated in Table I. These critical ex-
ponents imply anomalous diffusion and density fluctua-
tions, which could be experimentally probed. The sin-
gle cell mean-square displacement behaves as ∆L2(t) =
〈[r(t) − r(0)]2〉 ∼ t2/z = tα, which implies superdiffu-
sive behaviour in two and three dimensions (see Table I).
The scaling form of density correlations 〈ρ(r, t)ρ(r′, t)〉 ∼
|r − r

′|2χ can be used to calculate the overall number
fluctuations ∆N2 =

∫

ddrddr′〈ρ(r, t)ρ(r′, t)〉 leading to
∆N ∼ Ld+χ = Lβ. Note that for a system of par-
ticles with no interaction and cell division the expo-
nents χ = −d and z = 2 would hold, which correspond
to normal diffusion and no scaling for number fluctua-
tions. The calculations yield a negative exponent z in
a one-dimensional system, which would result in finite
mean-square displacements corresponding to localization
of cells.

Our predictions could be tested in experiments if it is
possible to control the parameters involved such as the
cell carrying capacity C0, the growth rate λ or the dif-
fusion constant D. From Fig. 2(b) one can see that the
phase transition could be detected when the average time
a cell takes to move by a distance of the order of its own
size is comparable with the rate of cell division. For tu-
mor cells, typical cell division rates are of the order of
10−5/s [40]. With an estimated viscosity of soft tissues
of 1 Pa s [41] and a cell body length of the order of 10 µm,
the estimated diffusion constant will be ∼ 10−4 µm2/s,
which shows that the desired order of magnitude for the
effect is well within reach. We could speculate that the
separatrix in Fig. 2(a) might be interpreted as signaling
a transition to a phase where growth and number fluc-
tuations dominate. Characterization of this transition,
however, is beyond the scope of our simple perturbative
description. Interestingly, the chemotactic interactions
are prominent in controlling the large-scale behaviour of
the system together with the cell division dynamics.
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In summary, we have applied dynamical RG to study
the collective behaviour of cells which undergo chemo-
taxis and division, and are under the influence of non-
number-conserving nonequilibrium noise. We find a rich
phase diagram, which in some parameter regime predicts
a critical phase transition with nontrivial exponents that
can be calculated perturbatively, and suggest anomalous
diffusion of cells and long-range correlations. Our results
might help shed light on the question of what controls
the communication between strongly dividing cells that
are far apart and their collective behaviour. This could
help us towards addressing the fundamentally challenging
questions of what determines the sharp onset of metasta-
sis and how the metacommunity of metastatic cells across
the body of a cancer patient could still coordinate their
activities [1].
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