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The recent observation of fully-gapped superconductivity in Yb doped CeCoIn5 poses a paradox,
for the disappearance of nodes suggests that they are accidental, yet d-wave symmetry with protected
nodes is we ll established by experiment. Here, we show that composite pairing provides a natural
resolution: in this scenario, Yb doping drives a Lifshitz transition of the nodal Fermi surface,
forming a fully-gapped d-wave molecular superfluid of composite pairs. The T 4 dependence of
the penetration depth associated with the sound mode of this condensate is in accordance with
observation.

Introduction: CeCoIn5 is an archetypal heavy fermion
superconductor with Tc = 2.3K[1]. The Curie-Weiss
susceptibility signaling unquenched local moments, per-
sists down to the superconducting transition [1]. Local
moments, usually harmful to superconductivity actually
participate in the condensate and a significant fraction
of the local moment entropy (0.2 − 0.3 log 2 per spin) is
quenched below Tc.

The behavior of this material upon Yb doping is quite
unusual: the depression of superconductivity with doping
is extremely mild with an unusual linear dependence of
the transition temperature Tc(x) = Tc(0)×(1−x), where
x is the Yb doping[2]. Moreover, recent measurements[3]
of the temperature dependent London penetration depth
∆λ(T ) suggest that the nodal d-wave superconductivity
(where ∆λ(T ) ∼ T−T 2) becomes fully gapped (∆λ(T ) ∼
Tn, n & 3) beyond a critical Yb doping xc ∼ 0.2. Nor-
mally the disappearance of nodes would suggest that
they are accidental, as in s± superconductors. However
directional probes of the gap, including scanning tun-
neling spectroscopy (STM)[4, 5], thermal conductivity
measurements in a rotating magnetic field[6] and torque
magnetometry[7] strongly suggest that pure CeCoIn5 is a
d-wave superconductor with symmetry-protected nodes.
How then, can a nodal d-wave superconductor become
fully-gapped upon doping?

Here we provide a possible resolution of this paradox,
presenting a mechanism by which nodal superconductors
can become fully gapped systems without change of sym-
metry, through the formation of composite pairs. A com-
posite d-wave superconductor contains two components:
a d-wave BCS condensate and a molecular superfluid of
d-wave composite pairs[8]. Here we show when the scat-
tering phase shift off the magnetic ions is tuned via dop-
ing, a Lifshitz transition occurs which removes the nodal
heavy Fermi surface, without losing the superfluid stiff-
ness, revealing an underlying molecular superfluid of d-
wave composite pairs (see Fig. 1).

In the absence of an underlying Fermi surface, a com-
posite paired superconductor can be regarded as Bose-
Einstein condensate of weakly interacting, charge 2e d-
wave bosons in which the Bogoliubov quasiparticle spec-
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FIG. 1: Schematic phase diagram for the YbxCe1−xCoIn5.
For x < 0.2 the temperature dependence of London penetra-
tion depth ∆λ ∼ T −T 2, consistent with nodal d-wave super-
conductivity in clean and dirty limits respectively. However
for x > 0.2, the power law of the ∆λ exceeds 2 and reaches
up to 4[3]. This is incompatible with nodal d-wave supercon-
ductivity and suggests a fully-gapped state. We argue that in
the gapless phase Cooper pairs and composite pairs coexist
whereas in the fully gapped phase, only the composite pairs
are present. As function of Yb doping, chemical potential in-
creases and the nodes of the order parameter moves to the
corners of the Brillouin zone and annihilate. We predict that
upon further doping, there is a second quantum phase transi-
tion to a reentrant gapless phase. Upon even further doping,
there might be a third transition to a normal state at xs since
superconductivity has been only observed up to x ≤ 0.65.

trum is fully gapped[9], with a residual linear sound mode
with dispersion Eq ∼ vsq, cut off by the plasma frequency
ωp ∼ vs/λL at wavevectors below the inverse penetration
depth q << 1/λL. At temperatures above the plasma fre-
quency, the superfluid stiffness is governed by Landau’s
two-fluid theory of superfluids, in which the excitation of
the normal superfluid is predicted to give rise to a power
law dependence of the penetration depth ∆λ(T ) ∼ T 4 in
three dimensions, consistent with experiments[3].

A quantum critical point recently observed for x ∼ xc
in transverse magnetoresistance measurements [10] ap-
pears to coincide with the disappearance of the super-
conducting nodes. At larger Yb doping, we expect a sec-
ond quantum critical point into a reentrant gapless phase
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FIG. 2: Schematic heavy fermion band structure. Ce Kondo
lattice is hole-like whereas Yb Kondo lattice is electron-like.
Thus upon Yb doping, chemical potential increases and heavy
fermion band structure turns from hole-like to electron-like.

as shown in Fig. 1 with the redevelopment of a d-wave
paired heavy electron pocket around the Γ point in the
Yb rich Kondo lattice.

We now expand on the idea of composite pairing and
discuss its detailed application to Yb doped CeCoIn5 and
the consequences and the predictions of our theory.

Composite pairing: The composite pairing concept was
first introduced in the context of odd-frequency pairing
[11], and later associated with the composite binding
of a Cooper pairs with local moments[8, 12–14]. Vari-
ous other forms of composite pairing have been recently
suggested in the context of cuprate superconductors[15].
Composite pairing naturally emerges within a two-
channel Kondo lattice model where constructive interfer-
ence between two spin-screening channels drives to local
pairing. Composite pairing can be alternatively regarded
as an intra-atomic version of the resonating valence bond
pairing mechanism[16, 17]. The composite pair ampli-
tude is given by

ΛC(j) = 〈ψ†1j~σ(iσ2)ψ†2j · ~Sf (j)〉 (1)

where ψ†Γj creates conduction electrons in the Wannier

state of channel Γ ∈ (1, 2) and ~Sf (j) describes the spin
operator of the local f-moment at site j. So, here two
conduction electrons in orthogonal channels are screen-
ing the same local moment, giving rise to a singlet com-
posite pair, which exists within a single-unit cell and
thus can be regarded as a molecular unit. The ψ’s
can be decomposed into plane waves using the rela-
tion ψΓjσ =

∑
k ΦΓ

σσ′(k)ckσ′eik·Rj where the form fac-
tor ΦΓ

σσ′(k) captures the different symmetries of the two
types of hybridization. While in a simple model, one can
take Φ1k and Φ2k to be s-wave and d-wave, in real materi-
als the momentum dependence will be more complicated,
and the ΦΓk’s become matrices that are only diagonal in
the absence of spin-orbit coupling. The Kondo coupling
in the two Γ channels JΓ are a consequence of virtual
charge fluctuations from the singly occupied ground state
into the excited empty and doubly occupied states.

The symmetry of the composite pair condensate is de-
termined by the product of the two form factors Φ1kΦ2k.
In the simple model, where Φ1k and Φ2k have s- and d-
wave symmetries respectively, the composite pairs will
have a d-wave symmetry. A more detailed analysis in-
volving the underlying crystal field symmetries finds that
the two channels have Γ6 and Γ7 symmetries, again lead-
ing to dx2−y2-wave like composite pairs[14]. The super-
fluid stiffness

Q = QBCS +QM (2)

has two components[8]: a BCS component

QBCS =
nse

2

m∗
(3)

derived from the paired heavy electron fluid, where ns is
the superfluid density, and a composite component

QM '
∑
k

Λ2
C(Φ1k∇Φ2k − Φ2k∇Φ1k)2

Σ2
N

√
ε2k + 2Σ2

N

∼ e2

~2a
(kBTc),(4)

here given at zero temperature, resulting from the mo-
bility of the molecular pairs and derived ultimately from
the non-local character (momentum dependence) of the
hybridization form factors. Here, a is the lattice con-
stant, ΣN is proportional to the normal (hybridization)
part of the conduction electron self-energy and εk is the
conduction electron dispersion. QM is directly propor-
tional to the condensation energy, a consequence of “local
pair” condensation and it does not depend on the pres-
ence of a Fermi surface. In three dimensions, QBCS ∼
(εF /a)(e/~)2 is proportional to the Fermi energy: in con-
ventional superconductors the superfluid stiffness is much
greater than Tc and the BCS component will dominate,
but as the Fermi surface shrinks, QBCS vanishes. Nor-
mally, this would drive a superconductor-insulator tran-
sition, but now the superconductivity is sustained by the
additional stiffness QM of the composite pair condensate.
Note that, within this picture, the BCS and composite
components have the same origin and do not compete
with one another.

For example, consider a single channel Kondo lattice
model at half filling, for which the ground state is a
Kondo insulator with a gap to quasiparticle excitations.
The inclusion of a second Kondo channel leads to com-
posite pairing beyond a critical ratio of the coupling con-
stants. (There is no Cooper instability in this case since
there is no Fermi surface.) As a result the Bogoliubov
quasiparticle spectrum is fully-gapped even though the
composite order parameter has d-wave symmetry. This
state is an example of a Bose-Einstein condensate of d-
wave molecules.
Connection with Yb doped CeCoIn5: Due to the

tetragonal crystal field, the low lying physics of CeCoIn5

is governed by a low lying Γ7 Kramers doublet[18]. The
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Kondo effect in Ce and Yb heavy fermion compounds
results from high frequency valence fluctuations. In Ce
compounds the dominant valence fluctuations occur be-
tween the 4f1 and 4f0 configuration 4f1 � 4f0 + e−,
giving rise to an average f-occupation below unity (nCef ∼
0.9)[19, 20]. Using the Friedel sum rule, this gives rise to
a scattering phase shift δ < π

2 and in the lattice, to hole-
like heavy Fermi surfaces. By contrast, Yb heavy fermion
materials involve valence fluctuations between the 4f13

and 4f14 configurations e− + 4f13 � 4f14, so the aver-
age f-occupation of the active Kramers doublet exceeds
one (nY bf ∼ 1.7)[19, 20] [29], the corresponding scattering
phase shift δ > π

2 and an electron-like Fermi surface in
the Kondo lattice (Fig. 2). As the Yb doping proceeds,
the typical character of the resonant scattering changes
from Cerium-like to Ytterbium-like and the occupancy
of the low-lying magnetic doublet nf will increase as a
function of Yb doping

nf (x) ≈ (1− x)nCef + xnY bf (5)

0.9 + 0.8x (6)

Yb doping effectively increases the f-electron count nf ,
causing the average scattering phase shift δ to rise. As
a function of doping, the nodes of the gap move to the
zone corner as shown in Fig. 1 (a), and annihilate once
δ ∼ π/2, forming a Kondo insulator immersed within a
composite d-wave superfluid.

STM quasiparticle interference experiments show that
there are two hole-like bands and an electron-like band[5],
where the superconducting gap has been identified on
the hole-like bands. We predict that the annihilation of
these nodes as a function of doping will be seen on these
bands in particular in the α band as defined in ref. [4].
Indeed the disappearance an electron-like band is seen
both in ARPES[20] and dHvA[21] experiments. How-
ever, the behavior of the electron-like band is unclear. At
higher doping, the nodes should reappear. (see Fig. 1).
Indications of strong Fermi surface reconstructions seen
in transport data around x = 0.55 [21] may be tenta-
tively identified with this second quantum critical point.
It would be interesting to see if the nodal quasiparticles
reappear beyond this point.

Penetration depth: In nodal superconductors, the tem-
perature dependence of the change of the penetration
depth ∆λ(T ) ∼ Tn is either n = 1 in the clean limit or
n = 2 in the dirty limit. A higher power is inconsistent
with a nodal gap. Experiments[3] show that n ∼ 3−4 for
x ∼ 0.2. By contrast, the temperature dependent pen-
etration depth of a fully-gapped molecular condensate
is governed by the superfluid sound mode whose scale
is set by the superfluid stiffness QC . In a Landau two
fluid model, the temperature dependence of the super-
fluid density is

ρs(T ) = ρ0 −
(2e)2

d

∫
ddq

(2π)d

(
− ∂n(ωq)

∂εq

)( q

m∗

)2

(7)
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FIG. 3: Temperature dependence of the London penetration
depth. For T < ωp, the ∆λ(T ) is exponentially suppressed,
whereas it crosses over to T 4 for T > ωp.

where d is the dimension and m∗ is the effective mass
of the composite pairs. Since [q] = T , by power count-
ing ρs ∝ T d+1, leading to a temperature dependence of
the penetration depth given by λ(T ) = λ0 + βTn where
n = d + 1. Since the condensate is charged, the linear
sound spectrum will be gapped by the plasma frequency
ωp. We estimate ωp to be about 10-100 mK [30] and as-
suming the composite superfluid is three dimensional, the
temperature dependence of the penetration depth will
have a power law n = 4 for T > ωp as shown in Fig 3,
which is consistent with experiments. We should note
that this power law is not uniquely identified with com-
posite pairing, as the Gorter-Casimir two-fluid behavior
of s-wave superconductors also gives a T 4 dependence at
low temperatures. However, composite pairing provides
an explanation for the transition from nodal d-wave to
nodeless superconductivity within a single pairing mech-
anism.

Resistivity above Tc: An over-simplistic application of
Tinkham’s fluctuation conductivity theory [22] to our
case, gives a resistivity of the form ρ(T ) = ρ(Tc) +
AT (4−d)/2 giving a T 1/2 power-law in three dimensions
which reflects the phase space for superconducting fluc-
tuations. Remarkably, experiments [10] display a robust
T 1/2 resistivity at dopings x > 0.2, surviving over a
decade in temperature up to 20K. However, this temper-
ature range is far too great to be attribute to fluctuations
about a weak-coupling BCS superconductor. One possi-
bility is that the vicinity to unitary pairing enhances the
range of the superconducting fluctuations. Alternatively,
critical two-channel Kondo impurity physics may play a
role in reinforcing the robust T 1/2 resistivity, in accor-
dance with composite pairing.

Thermal conductivity: The thermal conductivity, κ,
of a d-wave superconductor is dominated by the nodal
quasiparticle excitations which leads to a linear temper-
ature dependence[23] with a coefficient that oscillates
in a perpendicular magnetic field as a function of in-
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plane orientation[6]. In the fully-gapped phase, the linear
temperature dependence of κ will be exponentially sup-
pressed κ/T ∼ (∆/T )2e−∆/T , leading to a jump in κ0/T
at the Lifschitz transition and κ ∼ T 3 phonon behavior.
The oscillations of κ in magnetic field will also be sup-
pressed due to the absence of nodal quasiparticles, and
it should show activated behavior.

Conclusion: Composite pairing provides a natural ex-
planation for the development of a fully-gapped state
in Yb doped CeCoIn5. As a function of Yb doping
the chemical potential increases and the nodes move to
the corner of the Brillouin zone. When the phase shift
reaches π/2, the nodes annihilate, completely depleting
the Fermi surface. The resulting fully-gapped state has
a superfluid stiffness derived from the composite pairs,
a form of “molecular” condensate. The predicted sound
mode as the low energy excitation of the molecular con-
densate may be observable in ultrasound experiments.
Moreover, the unusual linear doping dependence of the
transition temperature Tc can now simply understood as
the BEC temperature of the composite pairs.

We also note that the mechanism presented here may
apply to a much broader class of strongly interacting elec-
tron fluids: the recent observation of fully gapped super-
conductivity developing in CeCu2Si2 in a field [27] and
Ce doped PrPt4Ge12[28] are interesting additional can-
didate examples of this phenomenon that deserve future
examination.
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