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Analysis of the spatial dependence of current-voltage characteristics obtained from scanning tun-
neling microscopy experiments indicates that the charge density wave (CDW) occurring in NbSe, is
subject to locally strong pinning by a non-negligible density of defects, but that on the length scales
accessible in this experiment the material is in a “Bragg glass” phase where dislocations and anti-
dislocations occur in bound pairs and free dislocations are not observed. A Landau theory-based
analysis is presented showing how a strong local modulation may produce only a weak long range

effect on the CDW phase.

PACS numbers: 73.20.-r, 73.21.Ac

The effect of disorder on the properties of condensed
matter systems is important both in terms of fundamen-
tal physics and of technological applications. In charge
density wave (CDW) systems, randomly positioned im-
purities provide a random field which couples linearly to
the order parameter [I]. Theory dating back to the 1970s
indicates that if the impurity potential is strong enough,
the random field destroys the charge density wave com-
pletely, leading to a phase with exponentially decaying
correlations and a correlation length of the order of the
mean distance between impurities [2, B]. Subsequent
work revised this picture, showing that in spatial dimen-
sions d = 3, weak impurity pinning may lead instead to
a topologically ordered “Bragg glass” phase with power-
law density correlations [4H12].

While the physics of random field systems has been
of intense theoretical interest, experimental information
has mainly come from transport and scattering measure-
ments which average over large sample volumes [T}, T3+
I7). An important exception is the flux lattice decora-
tion experiments which provided important early sup-
port to the Bragg glass picture for vortices in supercon-
ductors [I8, [19]. The development of stable scanning
tunneling spectroscopy (STS) techniques which provide
atomic-resolution imaging of local electronic density over
wide fields of view has opened up new avenues for inves-
tigation of fundamental electronic physics, in particular
providing real-space information on the effects of disor-
der on electronically ordered states [20, 2I]. In this pa-
per, we present an analysis of scanning tunneling spec-
troscopy measurements carried out on NbSes, a repre-
sentative charge density wave system. The analysis mo-
tivates a Landau theory which provides insights into the
effects of strong pinning in charge density wave systems.

NbSes is a quasi-two dimensional material. Its unit cell
consists of two blocks of Se-Nb-Se layers; the Nb atoms
in each layer form a triangular lattice and the electrical
conductivity is strongly anisotropic, being much larger
for in-plane currents than for currents flowing perpen-
dicular to the layers [22]. Scattering measurements [23]

indicate that a second order phase transition occurs at
T. =~ 34 K; below this temperature a charge density wave
forms. The charge density wave involves condensation of
electronic density at three wavevectors Qi=1,273 related
by 120° rotations. |Q}| ~ @i/3 ~ 0.7 A~1 with é, the
smallest nonzero reciprocal lattice vectors. We may write
the modulation of the electron density dp in the charge
density wave phase as

Sp(z) = Zi: R (zpi(f)ei@rf) (1)

The CDW order parameters 1; are complex numbers
which may be written in terms of a real magnitude
and a phase ¢;. Deviations from perfect charge density
wave order involve spatial variations of n and ¢.

We use the scanning tunneling microscopy (STM) data
shown in Fig. [T] to obtain real-space information about
the spatial dependence of the amplitude 7n(x) and phase
¢(x). The sample used here is the one described in
Ref. 24 and is made by vapor transport. The cleaved
surface is believed to be a Se layer, since a Se-Se bond is
van deer Waals, while a Se-Nb bond is Coulombic. Fig.[T]
(a) shows the STS topographic image of the cleaved sur-
face at 22 K < T, = 34 K. The voltage and current are
fixed to be —100 mV and 20 pA respectively. The mea-
sured signal is the vertical displacement of the STM tip;
this depends on the physical topography and on the near
Fermi-level electronic density of states at the tip posi-
tion. The large number of lighter white spots form an ap-
proximately triangular lattice with mean lattice constant
A ~ 1 nm about three times the basic lattice constant,
consistent with the CDW wave vector found in scattering
measurements [23]. We therefore believe that these are
local maxima in Jp arising from CDW formation. The
small number of heavy white spots indicate impurities.
There are about 40 impurities in this field of view, which
contains ~ 10> CDW unit cells; in other words, the im-
purity density nimp =~ 0.4%. The CDW coherence length
&o is roughly of the order of the CDW period ~ 1 nm,
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FIG. 1: (Color online) (a) A topographic image of a ~ 32 nm x 32 nm region of NbSe; at 22 K < T. = 34 K taken under
conditions of constant sample-tip current and bias voltage. The heavy white spots are the strong pinning centers. (b) Delaunay
analysis of the image. Diamonds (squares) represent CDW maxima with more (fewer) than six edges. Impurity locations are
indicated by the circles. Thick broken lines which do not close indicate that some impurities create dislocations. Larger sized
thick solid loops indicate that on larger length scales there are no free dislocations. (c) Main panel is the phase configuration
of the phase ¢ of one of the CDW components displayed over the same field of view as shown in (a) and (b). The right inset
shows a typical smooth modulation near an impurity. The left inset shows a typical vortex-antivortex pair near an impurity.
X’s are the locations of impurities. The lower panels of the insets are the phase profile along the dotted line.

since the phonon softening occurs over the wide range of
the Brillouin zone [30, BI]. Thus, we assume that the
inter-impurity distance [ ~ 5 nm is much greater than
&o. The signal associated with impurities may come ei-
ther from a physical change in surface height (associated
e.g. with an impurity in the Se layer) or from a change
in the local density of states. However, one may see that
in almost all cases the impurity sits in the center of a
hexagon of CDW maxima and has a triangular shape of
size $ 1 nm consistent with interference of three CDW
wave vectors. This suggests that a significant contribu-
tion of the impurity signal arises from impurity-induced
modulations of the density of states, and that in partic-
ular impurities lead to an increase in the local density of
states which acts as a strong pinning center fixing the lo-
cal CDW maximum to the impurity site. More detailed

discussions about pinning are given in the supplementary
material.

Fig. [2| presents the autocorrelation of the experimen-
tal signal, interpreted as a density of states modulation.
We present both the density modulation relative to the
average value dp and the absolute value or amplitude 7
(the supplementary material explains how the correla-
tion functions are defined and computed). The ampli-
tude autocorrelation exhibits only a small decrease from
the value for perfect order (= 1). The autocorrelation of
the total CDW modulation §p decays exponentially with
a decay length ~ 4 nm comparable to the inter-impurity
spacing [ ~ 5 nm. Taken together, these facts indicate

that the main effect of the impurity is on the phase of
the CDW order parameter.

While all impurities produce a local maximum in the
amplitude of the order parameter, different impurities
have different consequences for the phase, shown in
Fig. c). The main panel shows the phase field cor-
responding to one component of the CDW. We Fourier
transformed the data in Fig. a), and filtered it by re-
taining only the Fourier component near the six CDW
peaks (see the supplementary material for details). The
two insets show expanded views of the phase near im-
purity sites. The right inset shows an impurity that in-
duces a smooth and small phase modulation. The left in-
set shows that a different impurity induces a large phase
modulation from —7 to 7 as we move in a counterclock-
wise fashion around the defect. Only about ~ 20% of the
identifiable defects produce 27 phase modulations (vor-
tices); the remainder produce smoothly varying modu-
lations of the phase. The theoretical analysis presented
below suggests that phase slips occur near defects which

prefer a phase very different from the average background
phase.

To assess the longer length scale effects of impurities,
we construct Delaunay loops [I8-21] 25] based on the
CDW maxima (see the supplementary material). Fail-
ure of a loop to close indicates the presence of one
or more uncompensated topological defects inside the
loop. Fig. b) presents sample loops. While small
loops around some impurity sites (broken lines) fail to
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FIG. 2: (Color online) Autocorrelations of the CDW compo-
nent Jp parallel to and perpendicular to a CDW wave vector
Q1, and of the amplitudes 7.

close, indicating the presence of impurity-induced topo-
logical defects, loops of size larger than a few lattice con-
stants (solid lines) do close, indicating that in this field
of view dislocations appear only in bound dislocation-
antidislocation pairs. The loops continue to close even if
the size of the loop becomes as large as the image size,
implying that on the length scales accessible to this ex-
periment, there are no free dislocations, in other words
that the system is in a Bragg glass phase [4HI12], with the
decay of the §p autocorrelation being produced primarily
by a smoothly varying phase field, as shown in the main
panel of Fig. [Tj(c).

Thus, in summary, the data presented here indicate
that the impurities observed in this NbSes sample are
strong pinning centers, but nevertheless leave the system
in a Bragg glass phase, in apparent disagreement with
the conventional idea that the strong impurities induce
free topological defects and completely destroy the order
[2,[3]. To address the issue we present an energy analysis
based on the assumption that the impurities are strong,
but also dilute on the scale of the bare CDW coherence
length. The analysis is inspired by Refs. 26| and 27, but
goes beyond these works by taking into account the long-
ranged correlations implied by the fact that the phases
obey the Laplace equation.

A crucial issue in the analysis is the dimensionality of
the system. While NbSe, has very anisotropic electronic
properties [22], we believe that the appropriate model is
three dimensional for the following reasons. First, three
dimensional critical scattering is observed in the simi-
lar compound 2H—TaSey [23], with correlation lengths
in the in-plane and out-of-plane directions differing only
by a factor of three. Second, below the transition tem-
perature, the development of the order parameter agrees
with mean-field theory [23], while a two dimensional in-

commensurate CDW cannot show a true long-range or-
der [28]. Third, a first principles calculation showed that
single layer NbSes does not exhibit the 3 x 3 periodic-
ity [29]. These arguments suggest that, most likely be-
cause of lattice effect, the CDW in NbSe, is not unusually
anisotropic. In this letter we therefore focus on the three
dimensional case, commenting briefly on the differences
arising in d = 2. More details can be found in the sup-
plementary material.

For simplicity, we consider a CDW described by one
phase variable ¢, and neglect amplitude modulation. We
now add impurities at positions x,; these impurities act
to locally pin the phase to the values 6,. At distances
| — Z,| > € (€ is the coherence length of the CDW) the
phase will change; this may take place either by a smooth
modulation [as shown in the right inset of Fig. [T{c)] or
by creation of a defect-antidefect pair [as shown in the
left inset of Fig. [[[c)]. In the absence of defects the free
energy of this phase only model is

F= [ @ps (Vo) = VIS cosp, - o)), (2)

where pg is the phase stiffness, =, labels the positions
of the impurities, 6, is the phase energetically favored
by the impurity at z, (this depends on the position of
the impurity), and V is the magnitude of the impurity
potential [taken to be the same for all impurities in light
of the weak variation of amplitudes found in Fig. [[[a)].
We have rescaled lengths by the ratio of in-plane to out
of plane coherence lengths. In a simple model, we expect
that ps ~ fo|lY|?€2 ~ fot&d with fo a measure of the
condensation energy per unit volume at T = 0, ¢ the
CDW amplitude, £ a bare coherence length, and ¢t =
(T, — T)/T, the reduced temperature, while V' ~ V1) ~
Vo\/t is proportional to a bare pinning potential V; and
to the first power of the CDW amplitude. We assume
the impurities are dilute (mean inter-impurity distance [
much greater than CDW correlation length ¢ = &y/v/)
[30, 31]; this condition breaks down close to the transition
temperature, or for dense impurities.

We now consider the energetics of smoothly varying
phase configurations, assuming for simplicity that Vj is
very large. At distances larger than a correlation length
from any impurity site, minimization of Eq. shows
that the phase obeys the Laplace equation V2?¢ = 0. So
a general solution in the three dimensional case is (for
=7 > €)

o) = 30 = 3)

)
71-a|

where 0,’s are parameters to be determined. Substituting
this into Eq. (2)), we obtain

2
g = %ZKabéaéb + %Z <0a - Z Kab9b> . (4)
ab a b



FIG. 3: (Color online) Typical phase configurations obtained
from Eq (5) when e =0 in (a) two dimensions, and (b) three
dimensions. The lattice constant is £ ~ 1Inm, and the linear
system size is 31£. The impurity concentration is nimp =~
0.4%.

where the variable inside the parenthesis is taken to be
in the range [—m, 7], € = 8mpg/V, and I is the identity
matrix. The kernel is Kop = dap + (1 — 0ap) &/ |Ta — Tp)-
Minimizing Eq. (4] gives

0o => (el +K)y 0, (5)
b

The Coulombic form of K means that the inverse ma-
trix (e/ + K)~! has a screening form with a characteristic

length rrp = 1/13(1 + €) /4w¢&; its Fourier components are

p2
(1+¢) (p? +r7g)’ )

Thus, even if the phases 0, preferred by the impurities
are random variables, on scales longer than rrp fluctua-
tions of the @ are suppressed. As a result, the variance
(#(0)?) is not infra-red divergent and the solution given
in Eq. therefore may have a long ranged order. A fur-
ther analysis, to be presented in detail elsewhere, shows
that the phase fluctuation spectrum is gapped (energy
cost of a phase fluctuation of momentum p ~ p? + r{%)
Similar conclusions are found for the two dimensional
case, but with a parametrically shorter screening length
ror ~ [ and a more significant effect of defects. There is
also a strong dependence of the quantitative results on
the short length scale cutoff.

We also numerically solved Eq. when € = 0 on
a regular lattice with a lattice constant { and nimp ~
0.4%. Fig. |3| shows typical phase configurations in two
and three dimensions on a plane (details are presented
in the supplementary material). In both cases, the phase
varies slowly at long length scales; the two dimensional
case, however, has more short length fluctuations (the
exact amount depends on the detail of the ultra-violet
cut-off).

We now turn to the question of local topological de-
fects. Making a defect on one site a allows the phase to

(I + )" (p) =

relax rapidly from the value preferred by the local im-
purity towards a background value determined by the
other defects, decreasing the elastic free energy at the
cost of driving the amplitude to zero over a correlation
volume. We may estimate that the defect costs an energy
Evortex ~ f0t2§3/2 ~ fO\/ié-(?))/2 ~ psg with fO the zero
temperature condensation energy density defined above.
The energy gain is associated with removing one defect
from the elastic energy. Using the screened Coulombic
form of K~! and noting that the 6, are random vari-
ables we obtain that the elastic energy gain is roughly

Eelastic =~ 47TPS§(1 + 6)_195 + O(f/l) (7)

Thus the energy cost of making a defect-antidefect pair
is parametrically equal to the cost of the phase defor-
mation and which one is preferred is determined by
an intrinsic property of the CDW [namely the ratio
k = 41ps€/ Evortex (1 + €)] and the square magnitude of
the phase deviation caused by the impurity. Our find-
ing that about 20% of impurities induce defects suggests
that k = 0.16, and that defects are only produced when
the phase deviates by an amount near its maximal value
(0, ~ ). In d = 3 a small finite density of defect loops
has no effect on long ranged order, but in d = 2 a finite
density of vortex/antivortex causes an algebraic decay of
correlations (see the supplementary material).

In summary, we have investigated impurity-induced
pinning in the CDW state of NbSes, a paradigm charge
density wave state. We find that the impurities are
“strong” (enhancing the local CDW amplitude by a fac-
tor of two), but both experimental and theoretical anal-
yses show that these impurities lead to a charge density
wave phase which varies smoothly over scales paramet-
rically longer than the inter-impurity distance. Only a
small fraction of the impurities produce topological de-
fects and these are found to occur only in tightly bound
dislocation-antidislocation pairs near the impurities; the
material is identified as being in the Bragg glass phase on
the scales attainable in the experiment analyzed in this
paper. A model analysis shows that dilute but strong
impurities give a long-range order, and that the ground
state is gapped. The behavior at longer scales and effects
of anisotropy are interesting open problems.
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