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We present a wide class of partially integrable lattice models with two-spin interactions, which
generalize the Kitaev honeycomb model. These models have a conserved quantity associated with
each plaquette, conserved large loop operators on the torus, and topological degeneracy. We in-
troduce a ‘slave-genon’ approach, which generalizes the Majorana fermion approach in the Kitaev
model. The Hilbert space of our spin model can be embedded into an enlarged Hilbert space of
non-Abelian twist defects, referred to as genons. In the enlarged Hilbert space, the spin model is
exactly reformulated as a model of non-Abelian genons coupled to a discrete gauge field. We discuss
in detail a particular Z3 generalization, and show that in a certain limit the model is analytically
tractable and produces a non-Abelian topological phase with chiral parafermion edge states.

Introduction–The Kitaev honeycomb model [1] is an
exactly solvable spin model on the two-dimensional
hexagonal lattice, which can realize different exotic topo-
logically ordered phases of matter, along with non-
Abelian quasiparticle excitations. Over the past decade,
this model has generated remarkable excitement[2]: its
solvability has provided a theoretical framework to study
the emergence of topological order and non-Abelian
anyons from microscopic models, while its simplicity sup-
ports the hope for experimental realization, either in
Mott insulators with strong spin orbit coupling, such as
various Iridate compounds [3, 4], or directly engineered
with designer Hamiltonians [5]. In particular, the non-
Abelian state in the Kitaev model would open the possi-
bility of topological quantum computation [6].

In this paper, we generalize the Kitaev model to a
much larger class of partially integrable spin models with
only nearest-neighbor interactions. We show that there
is an exact transformation whereby these models can be
reformulated in terms of an array of interacting non-
Abelian defects coupled to a static discrete gauge field.
In order to implement the exact transformation, we intro-
duce a “slave genon” approach, where the local Hilbert
space on each site is rewritten in terms of the topological
degeneracy of a set of extrinsic non-Abelian twist defects,
referred to as genons [7, 8], together with a constraint on
their overall fusion channel. This generalizes the Majo-
rana fermion representation of the original Kitaev honey-
comb model [1]. While the transformed problem is itself
a non-trivial interacting problem, certain results in 1+1
dimensional critical phenomena can then be utilized to
solve the model in certain limits.

We will focus on a particular Zn rotor generalization of
the Kitaev model for most of the paper, and discuss more
general models in the end of the draft. We introduce a
graphical method to perform the slave genon technique,
making use of genons in bilayer FQH states [7, 8], with a
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FIG. 1: The links of a honeycomb lattice are labelled x, y,
or z, depending on their orientation. Sites on a plaquette are
labelled 1,..,6, as shown. Red and blue circles illustrate the
path L1, purple and orange squares illustrate the path L2,
which are used to define the string operators Φ1 and Φ2.

1/n Laughlin state in each layer. When n = 2, the genons
localize Majorana zero modes, thus reproducing Kitaev’s
construction. More generally they localize parafermion
zero modes [7–15]. For n = 3, we present preliminary
numerical results, and discuss the realization of a non-
Abelian Z3 parafermion phase, which contains the non-
Abelian Fibonacci anyon [6] in its excitation spectrum.

Zn Kitaev model–We consider the following Hamilto-
nian on the honeycomb lattice with n states per site:

H = −
∑
〈ij〉

Jsij (T
sij
i T

sij
j +H.c.), (1)

where sij = x, y, z depends on the direction of the link
ij (Fig. 1). T xi and T yi are n× n matrices satisfying the
relations: T xi T

y
i = T yi T

x
i ω, (T xi )n = (T yi )n = 1, where

ω ≡ ei2π/n.We further define: T zi ≡ (T xi T
y
i )†, implying

T zi T
x
i = T xi T

z
i ω, T yi T

z
i = T zi T

y
i ω. T si from different sites

commute with each other. The original Kitaev model
corresponds to n = 2.

The key fact about this model is that there is a con-
served operator associated with each plaquette. Define:
Wp ≡

∏
〈ij〉∈9Kij = (ωT x1 T

y
2 T

z
3 T

x
4 T

y
5 T

z
6 )†, where the

site labels are shown in Fig. 1. Following Kitaev, we
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define Kjk = T
sjk
j T

sjk
k . It can be verified directly that

[Wp, H] = 0, so that the spectrum can be decomposed
into eigenstates of Wp. Note that Wn

p = 1.
In addition to the above conserved plaquette operators,

the model (for n ≥ 3) with periodic boundary conditions
also admits conserved, non-commuting, loop operators:

Φ1 ≡
∏

2i−1,2i∈L1

T z2i−1T
z†
2i , Φ2 ≡

∏
2i−1,2i∈L2

T y2i−1T
y†
2i (2)

where [Φ1, H] = [Φ2, H] = 0, and Φ2Φ1 = Φ1Φ2ω
2.

The loops L1 and L2 are shown in Fig. 1, and describe
non-contractible paths around the hexagonal lattice in
the two directions. Since these operators are conserved,
eigenstates must form a representation of their algebra.
This rigorously implies a ground state degeneracy on the
torus that is a multiple of n (or n/2) for n odd (even).

Just as in the original Kitaev model, the generalized
model can be defined on any planar trivalent graph. A
key difference between the n ≥ 3 and the n = 2 cases is
that for n ≥ 3, the three operators T x,y,zi on each site
must be ordered with the same chirality. In other words,
the direction x→ y → z → x must be either all counter-
clockwise or all clockwise on all sites. This requirement
also means that the model can only be defined on planar
graphs. Physically, this is because the large loops Φ1,Φ2

defined above can be considered as Wilson loops of a
particle with statistical angle 2π

n . For n > 2 this particle
is an Abelian anyon, which can only be defined in two-
dimensions, while for n = 2 it is a fermion. Multi-site
terms can be added to the Hamiltonian without affect-
ing the conservation laws, as long as they are products
of bond terms Kij and/or K†ij . In the supplementary
materials[16], we present more details of the computa-
tion of commutation relations and conserved quantities
by setting up convenient diagrammatic rules.

Anisotropic limit and the Abelian phase – Similar to
the original model[1], the anisotropic limit Jz � Jx, Jy
can be easily solved. In this limit, we first diagonalize
the Jz terms in the Hamiltonian. To do this, let us pick
a basis of n states on each site, |a〉i, which diagonalize
T zi : T zi |a〉i = ωa|a〉i, for a = 0, ..., n−1. Pairs of sites i, j
coupled by Jz have their n2 states split into n degenerate
lowest energy states, |a〉i|n − a〉j , for a = 0, .., n − 1.
These states are separated by a gap of order Jz relative
to the remaining n2 − n states. For large Jz, we can
treat pairs of sites separated by vertical links effectively
as a single site, thus obtaining at low energies a square
lattice with n states per site. Within the degenerate n-
dimensional space on each site, we can define a new set
of Zn rotor operators Lxi , Lyi , such that Lxi |a〉i|n− a〉j =
ωa|a〉i|n− a〉j , and Lyi |a〉i|n− a〉j = |a− 1〉i|n− a+ 1〉j .

Within this low-energy subspace, the remaining Jx, Jy
terms can be treated within perturbation theory. The
lowest order term that does not change the Jz bond en-

ergy is
J2
xJ

2
y

(6Jz)3
K12K23K45K56 (with the label of sites de-
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FIG. 2: (a) A genon (twist defect) in a bilayer FQH sys-
tem, is marked by the X. The branch cut emanating from the
genon connects the two layers. (b) The Wilson lines of the
Abelian quasiparticles can locally be cut and rejoined. (c) A
spin is represented in terms of 4 genons, labelled x, y, z, t.
The constraint that the Wilson loop around all 4 genons be
trivial reduces the number of states to n. The double loop
around each genon can always be set to one. (d) T x, T y, T z

correspond to Wilson loop operators around pairs of genons.

fined in Fig. 1). It is straightforward to show that this

gives Heff =
J2
xJ

2
y

(6Jz)3

∑
ijkl∈� L

x
i L

y
jL

x
kL

y
l , which is the Zn

toric code Hamiltonian [17–19].
Slave Genons – In order to further analyze the model

beyond this strongly anistropic limit, we introduce a
‘slave genon’ approach, which maps the spin model to
a model of coupled non-Abelian twist defects [7, 8, 10–
13, 20–27], referred to as genons [7, 8], in a topolog-
ically ordered state. This generalizes the Majorana
fermion representation introduced in the original Ki-
taev honeycomb model [1], along with well-known slave
fermion/boson techniques [28]. A key difference in the
n ≥ 3 Zn models is that the slave particles must be topo-
logical defects in a topologically ordered system, instead
of fermions or bosons.

As a formal aid in defining these slave particles, we
introduce a Laughlin 1/n fractional quantum Hall (FQH)
state on the surface shown in Fig. 2 (a). The surface is
obtained by introducing a branch cut line in a bilayer
system, such that the two layers are exchanged across
the branch cut line. A genon is defined as the endpoint
of the [7, 8, 20]. Consider 4 genons with the constraint
that they fuse to vacuum. As is shown in Fig. 2 (c), this
constraint means a Laughlin quasparticle going around
the 4 genon cluster obtains no Berry’s phase. With this
constraint, the disk region with 4 genons is topologically
equivalent to a torus with a single layer of 1/n state[20],
which has n topological ground states. The slave genon
approach is defined by mapping the n-state rotor on each
site of the honeycomb lattice to such a cluster of 4 genons.
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FIG. 3: (a) The interaction terms in the Hamiltonian cor-
respond to the three types of loops. The blue loop around
each site represents the local constraint which commute with
the Hamiltonian terms. (b) A loop corresponding to the in-
teraction T y

i T
y
j can be decomposed into two non-overlapping

loops, Wij and uij .

The spin operators T x,y,zi are mapped to Wilson loop
operators, defined as the unitary rotation of topological
ground states induced by adiabatic propagation of charge
1/n Laughlin quasiparticles along a non-contractible
loop. T x,y,zi corresponds to the three non-contractible
loops shown in Fig. 2 (d). During topological deforma-
tions of the Wilson loops, we also require that a double
loop around a genon is contractible, as is illustrated in 2
(c). Physically this removes the ambiguity that a genon
may trap a Laughlin quasiparticle. We emphasize that
the genons and associated FQH state are entirely auxil-
iary degrees of freedom – the spin model is not required
to have a FQH state physically. When n = 2, it can
be shown that the genons localize Majorana fermions, so
this approach is equivalent to the Majorana representa-
tion of the original Kitaev model. For general n, it can
be shown that the genons localize Zn parafermion zero
modes. Thinking in terms of the genons described above
admits useful graphical representations of the operators.

Therefore in this representation, the spin model is
mapped to a two-dimensional array of genons, with cou-
plings given by Wilson loop operators. The two-site
terms Kij in H correspond to Wilson loops surround-
ing 4 genons, as shown in Fig. 3. Importantly, H com-
mutes with the local constraint at each site, since the
Wilson loop corresponding to the local constraint com-
mutes with that of Kij , as is illustrated in Fig. 3 (a).
On each site, the constraint can be expressed in the spin
operators T x,y,zi as T xi T

y
i T

z
i = 1, which projects the n2

states of 4 genons[20] to n states of the physical spin.
From the pictorial representation, we readily infer that

the Hamiltonian can be rewritten as:

H = −
∑
〈ij〉

JsijuijWij +H.c., (3)

where Wij and uij are the loop operators corresponding
to the operation of moving charge 1/n Laughlin quasi-
particles around the loops shown in Fig. 3b. Note
that uij only appears in the Hamiltonian in the term
T
sij
i T

sij
j . From Fig. 3, we deduce that [uij ,Wij ] = 0,

1

2 3 4
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FIG. 4: Hamiltonian (3) describes a hexagonal array of
coulpled genons, or Zn parafermion zero modes. For Jx = Jy,
and in the absence of interchain interactions, each chain is
at criticality, which in the n = 3 case is described by a Z3

parafermion CFT. Interchain coupling terms can be added
to gap out counterpropagating parafermion modes from each
chain, leading to a gapped topologically ordered state with a
chiral Z3 parafermion edge mode. Red bonds correspond to
the next neighbor interactions (see eq. (4) in text).

[uij , ukl] = 0 and therefore [uij , H] = 0. We can hence
replace the uij by c-numbers, associated with different
superselection sectors. Wij can be considered as a two-
dimensional “parafermion hoping” term, while the eigen-
values of ujk can be considered as a Z3 gauge field cou-
pled to the parafermions [9]. The precise meaning of
the parafermion coupling will be discussed in next para-
graph. By deforming the loops uij and using the
constraints shown in Fig. 2c, it is straightfoward to
show that the conserved plaquette operators, Wp, cor-
respond to the Zn “gauge flux” through a plaquette:
Wp =

∏
〈ij〉∈7 uij = u12u23u34u45u56u61.

To understand more explicitly the meaning of cou-
pled parafermion zero modes, we first consider the
Hamiltonian for a single chain, with uij uniformly set
to 1: H1D = −

∑
i(JxW2i−1,2i + JyW2i,2i+1 + H.c.),

with Wi−1,iWi,i+1 = Wi,i+1Wi−1,iω. This Hamiltonian
is equivalent to the transverse field Zn Potts model.
Following the results in the Potts model [9, 29, 30],
a pair of parafermion operators αLi, αRi can be in-
troduced, which satisfies the algebra αR/LiαR/Lj =

αR/LjαR/Lie
±i2πsgn(j−i)/n. In terms of spin operators

of the Kitaev model, we have αRi = T †1yK12K23...Ki−1,i,

αLi = T †1yK
†
12K23K

†
34...K

si
i−1,i, with si = −(−1)i. H1D

can be rewritten in terms of a “parafermion chain” by
setting Wi,i+1 ∝ α†RiαR,i+1. The 2D Hamiltonian (3)
can then be reinterpreted as an array of coupled 1D
parafermion chains [9, 15, 16, 31–33].

The single chain system with n = 3 is particularly in-
teresting. When Jx = Jy, the model is at a self-dual crit-
ical point of the 1D Z3 Potts model, which is described
by a Z3 parafermion conformal field theory (CFT) with
central charge c = 4/5[34]. At small but finite Jz, the
system can be viewed as coupled parafermion chains, as
is illustrated in Fig. 4. It is known that a “chiral” cou-
pling between 1D gapless chains can realize a chiral 2D
topologically ordered state[15, 33, 35, 36], if the right-
moving (left-moving) states of a chain are only coupled
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FIG. 5: Second derivative of the ground state energy density
as a function of Jz, computed from DMRG with 3 chains with
cylindrical boundary conditions, for Jx = Jy = (3 − Jz)/2.

to the left-moving (right-moving) states of the chain be-
low (above) by a relevant coupling. In our n = 3 system,
such a coupling would result in a non-Abelian topolog-
ical state with chiral Z3 parafermion edge states. This
is similar to the proposal of [15] although the latter is
not a local spin model and therefore realizes a different
topological order which we elaborate on below. In n > 2
models, the Jz coupling breaks time-reversal symmetry,
so that it is possible for the system with some proper Jz
to be in the same non-Abelian phase as the ideal system
with only chiral coupling.

Numerical Results – To further understand the n = 3
system, we have performed preliminary numerical anal-
yses. For the single chain with Jx = Jy, our DMRG re-
sults [37, 38] for the entanglement entropy shows that the
chain is indeed described by a CFT with central charge
c = 4/5. When Jz � Jx, Jy, we have verified through
exact diagonalization of system sizes up to 12 sites that
the system is gapped, with a 9-fold ground state degener-
acy. As Jz is lowered relative to Jx, Jy, we expect a phase
transition from the Abelian phase to the isotropic phase.
Fig. 5 shows DMRG results for the second derivative of
the ground state energy density, −d2E0/dJ

2
z , which in-

deed shows evidence of a sharp phase transition. We note
that the first derivative dE0/dJz appears smooth across
this transition, allowing us to rule out the possibility of
a level crossing between the nearly degenerate ground
states. These results confirm non-trivial features of the
Z3 Kitaev model, while they do not fully establish the
nature of the isotropic phase. More complete numerical
study of the isotropic phase will be left for future works.

Multi-site terms and the controlled limit– In the
original Kitaev model[1], a three site term drives the
model into the non-Abelian Ising phase. For n = 3,
the model is not fully solvable, but it is possible to
consider a modification of the Hamiltonian (1) that
makes the model analytically tractable, allowing us to
demonstrate the appearance of a non-Abelian phase
in this limit. As is pointed out in Ref. [15, 39],
there is a known correspondence between the lattice
parafermion operators and continuous fields in the

Z3 Potts model CFT. Using this correspondence,
one can see that the parafermion coupling of the form

−λ
∑
j,m

(
α†R,2j,m + α†R,2j+1,m

)
(αL,2j,m+1 + αL,2j+1,m+1)+

h.c. between two neighboring chains labelled by m and
m + 1 induces the chiral coupling between the right
movers of the m-th chain and the left movers of the
m+ 1-th chain. Since this is a direct application of Ref.
[15, 39]’s result, we will leave more detailed derivation
of this term for the supplementary materials[16].

Using the Wilson loop representation, the chiral
coupling between parafermions reviewed above can be
achieved in a local spin Hamiltonian:

H ′ = H − Jz
∑
7
O7, (4)

with O7 = (T z1 T
y
1 T

z
2 T

y
6 + T x3 T

x
2 T

z
2 T

z
1 T

y
1 T

y
6 +

T x3 T
x
2 T

z
2 T

z
1 +H.c.), and H given by Eq. (1). Therefore,

the above Hamiltonian, with Jx = Jy � Jz > 0, realizes
a gapped 2D topologically ordered state, with a robust
chiral Z3 parafermion CFT propagating along its edge.
The topological order can then be read off from the field
content of the Z3 parafermion CFT [34, 40], which has
6 topologically distinct quasiparticles. In contrast, the
system proposed by [15] has 2 distinct quasiparticles.

The coupling between parafermion chains in our model
involves only single parafermion operators from different
chains. This is not possible with the usual transverse
field Potts model, but is possible with the approach de-
scribed here. The slave genon transformation thus pro-
vides a way to design general interactions in 2D lattices
of parafermions in terms of local interactions of a 2D spin
model. A similar method can perhaps be employed more
generally, which may enable a spin model realization of
recently studied anyon lattice models [41, 42].
Further generalizations – The model described here

can be further generalized. For example, one can con-
sider genons in a generic Abelian FQH state. Quasi-
particles in each layer are labeled by integer vectors ~l,
with the fractional mutual statistics θll′ = 2π~lTK−1~l′

and self statistics θl = π~lTK−1~l determined by an inte-
ger valued K matrix[28]. 4 genons with the local con-
straint in Fig. 2 now correspond to a spin with |K|
states[8]. The spin operators T x,y,zi generalize to Wil-

son loop operators T x,y,z~l
of a quasiparticle ~l around

the same loops as those in Fig. 2 (d). These op-

erators satisfy the algebra T x~l T
y
~l′

= T y~l′
T x~l e

i2π~lTK−1~l′ ,

T s~l T
s
~l′

= T s~l+~l′ , and TK~n = 1 for all ~n ∈ ZN . Therefore, we

can consider the more general Kitaev-type Hamiltonian:
H =

∑
~l∈ZN

∑
〈ij〉 J~l;sijT

sij
~l
T
sij
~l

+ H.c. This model can

be analyzed similarly to the Zn generalization presented
earlier. In particular, there are conserved quantities asso-
ciated with each plaquette and conserved large loop op-
erators on torus geometry, and one can consider an exact
transformation to a lattice model of interacting genons
or, alternatively, generalized parafermion zero modes[14].
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