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We observe the suppression of inelastic dipolar scattering in ultracold Fermi gases of the highly
magnetic atom dysprosium: the more energy that is released, the less frequently these exother-
mic reactions take place, and only quantum spin statistics can explain this counterintuitive effect.
Inelastic dipolar scattering in non-zero magnetic fields leads to heating or to loss of the trapped
population, both detrimental to experiments intended to study quantum many-body physics with
strongly dipolar gases. Fermi statistics, however, is predicted to lead to a kinematic suppression of
these harmful reactions. Indeed, we observe a 120-fold suppression of dipolar relaxation in fermionic
versus bosonic Dy, as expected from theory describing universal inelastic dipolar scattering, though
never before experimentally confirmed. Similarly low inelastic cross sections are observed in spin
mixtures, also with striking correspondence to predictions. The suppression of relaxation opens
the possibility of employing fermionic dipolar species in studies of quantum many-body physics
involving, e.g., synthetic gauge fields and pairing.

PACS numbers: 34.50.-s, 03.65.Nk, 67.85.-d

Spin-statistics play a prominent role in determining
the character and rate of elastic collisions among ul-
tracold atoms or molecules [1–3], often leading to the
enhancement or suppression of thermalization. For ex-
ample, elastic collisions mediated by short-range inter-
actions between spin-polarized fermions are suppressed
at low velocity. The reason lies in the requirement that
the total two-particle state—the tensor product of spin
and orbital—must be antisymmetric both before and af-
ter a collision [4]. Because the orbital wavefunction must
be of odd parity for spin-polarized fermions, collisions
between two such atoms are inhibited by the p-wave cen-
trifugal energy barrier [5]. For van der Waals interac-
tions, this leads to a kinematic suppression of the elas-
tic cross section as ki → 0, where the wavevector ki is
proportional to the relative incoming momentum. The
fermionic suppression of thermalizing elastic collisions
has an important, well-known consequence: inefficient
evaporative cooling near quantum degeneracy [6].

This unfavorable scaling is modified in the case of 3D
dipolar interactions. The long-range, r−3 nature of the
dipolar interaction leads to an elastic cross section inde-
pendent of ki and proportional to the fourth power of the
magnetic dipole moment µ regardless of quantum statis-
tics in the limit ki → 0 [7–9] [10]. This manifestation
of “universal” elastic dipolar scattering implies that suf-
ficiently strong dipolar interactions allow spin-polarized
fermions to evaporatively cool even at energies compa-
rable to and below the Fermi temperature TF [11]. In-
deed, recent experiments employing the highly dipolar
fermionic gases KRb [3], Dy [12], and Er [13] have ob-
served efficient evaporative cooling at TF and below, pro-
viding a route to preparing quantum degenerate dipolar
Fermi gases without the use of sympathetic cooling [14].

But while large dipoles promote useful elastic colli-

sions, they also enhance inelastic dipolar collisions among
atoms in metastable Zeeman substates. Rapid heat-
ing or population loss are a result of the ensuing spin
relaxation [15] and are detrimental to experiments ex-
ploring quantum many-body physics or atom-chip mag-
netometry with highly dipolar gases in metastable spin
states [16–22]. Inelastic dipolar collisions among highly
magnetic atoms in magnetostatic traps were considered
in the context of bosonic Cr gases at fifty to hundreds of
µK [7] and at a few hundred nK [9] and Dy gases at hun-
dreds of mK [23] and at a few hundred µK [24]. The au-
thors of Ref. [7] derived an expression for inelastic dipo-
lar scattering using the first-order Born approximation
and observed rapid collisional loss in a single isotope of
bosonic Cr. See also Ref. [1]. While the loss rate proved
similar to that expected from theory, the theory’s gen-
eral applicability was unexplored. Reference [9] discussed
the role of Fermi statistics in dipolar relaxation, not-
ing that—despite the long-range nature of elastic dipo-
lar scattering—dipolar relaxation is a short-ranged scat-
tering process and should exhibit kinematic suppression
similar to elastic scattering via the van der Waals in-
teraction. Though predicted, this suppression was not
experimentally investigated.

By comparing dipolar relaxation rates in both ultra-
cold bosonic and fermionic dysprosium, we find that spin
relaxation is enhanced among bosons while suppressed
among fermions. With regard to the fermions, we find
that the more energy released, the less frequently these
exothermic reactions take place, and only quantum spin
statistics can explain this counterintuitive effect. The
strikingly close correspondence of our spin relaxation
data to theory predictions—with no free parameters—
represents a clear demonstration of the role quantum
statistics plays in universal inelastic dipolar scattering:
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i.e., these results should apply to any species whose col-
lisions are dominated by dipolar scattering.

Following Refs. [7, 9], we now describe two-particle
dipolar scattering within the first-order Born approxima-
tion, and in doing so quantify the role quantum statis-
tics play in suppressing or enhancing dipolar relaxation.
Dipolar scattering changes the orbital momentum of the
collision partners by ∆l = 0,±2 and the spin projection
of one or both of the atoms by ∆mF = 0,±1 [1, 7]. The
total angular momentum projection remains conserved
∆mF + ∆ml = 0, where ml is the orbital projection.

The dipolar relaxation cross section σdr connects the-
ory predictions to the experimentally measured colli-
sional loss rate βdr via βdr ∝ 〈(σ1 +σ2)vrel〉thermal, where
a thermal average must be taken, σ1 (σ2) is the single
(double) spin-flip cross section, and vrel is the relative
velocity; see Supplemental Material for details [25]. The
following expressions list the cross sections for the elas-
tic (σ0) and σ1 processes for a maximally stretched and
weak-field-seeking initial two-body spin state
|F,mF = +F ;F,mF = +F 〉 [7, 9]:

σ0 =
16π

45
F 4

(
µ0(gFµB)2m

4πh̄2

)2

[1 + εh(1)], (1)

σ1 =
8π

15
F 3

(
µ0(gFµB)2m

4πh̄2

)2

[1 + εh(kf/ki)]
kf
ki
. (2)

While the full theory is used in data analysis, we neglect
σ2 in this initial discussion since σ2/σ1 = F−1 � 1 in
large-spin atoms polarized in large |mF | states [25]. This
limit is satisfied for bosonic 162Dy (F = 8) and fermionic
161Dy (F = 21/2); F is the total angular momentum [26].

The kinematic factors in σ1 are a function of the ratio
of output to input relative momenta: by conservation

of energy kf/ki =
√

1 + m∆E
h̄2k2

i
, where ∆E = gFµBB is

the Zeeman energy in a magnetic field B, ki = µvrel/h̄,
µ = m/2 is the reduced mass, and gF is the g-factor [27].
The ratio h(x = kf/ki) of the exchange to the direct
terms in the cross section monotonically increases from
h(1) = −1/2 to h(x → ∞) = 1 − 4/x2; see Refs. [7][25].
The ratio x is varied between 2–14 in this work.

Quantum statistics of the colliding particles are re-
flected in the value of ε: ±1 for same-species bosons
and fermions, respectively, whose spin states are iden-
tical either in the incoming or outgoing channel [1], as
in Fig. 1(a)–(e); and 0 for distinguishable particles, such
as mixed species or, as in Fig. 1(f), same-species bosons
or fermions in mixed spin states both in the incoming
and outgoing channels. In the x � 1 limit—high B,
low T—the inelastic cross section (collisional loss rate)
vanishes as 4

√
T/B (4T/

√
B) for ε = −1, while it in-

creases as 2
√
B/T (2

√
B) for ε = +1 and

√
B/T (

√
B)

for ε = 0. The relative suppression ratio in this limit
becomes σfermions

1 /σbosons
1 = βfermions

dr /βbosons
dr ∝ 2T/B.

Ultracold gases of bosonic 162Dy and fermionic 161Dy
are prepared by laser cooling in two magneto-optical-trap
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FIG. 1. (Color online) (a–c) Single-spin-flip dipolar relaxation
of spin-polarized states into spin mixtures. Arrow points from
the incoming to the outgoing spin population. (d) and (e)
Single-spin-flip dipolar relaxation of spin mixtures into spin-
polarized states. (f) Single-spin-flip dipolar relaxation of a
spin mixture into a different spin mixture.

stages and by forced evaporative cooling in a 1064-nm
crossed optical dipole trap, as explained in previous pub-
lications [12, 28, 29]; see also Ref. [25]. The temperatures
of the boson and fermion gases, ∼400 nK, are chosen to
be slightly above quantum degeneracy to eliminate corre-
lation effects [9]: T/Tc = 1.5(1) [density 3(1)×1013 cm−3]
and T/TF = 1.4(1) [7(2) × 1012 cm−3] [30]. Adia-
batic rapid passage while in the optical dipole trap po-
larizes the atomic cloud in its absolute internal ground
state. Co-trapping 162Dy with 161Dy is used to enhance
fermionic evaporation efficiency, after which the bosons
are removed from the trap by a resonant pushing beam
with no adverse effect on the fermions. The atoms are
then prepared in the desired Zeeman substate(s) by driv-
ing rf transitions, as detailed in Ref. [25]. Stern-Gerlach
measurements are used to verify the final state purity.

The atomic cloud is trapped for varying lengths of time
in order to measure population decay. Decay curves are
fit to a numerically integrated rate equation that includes
collision terms for both one-body loss due to background
gas γ and two-body loss βdr:

dN

dt
= −γN − βdrV̄ −1N2, (3)

where V̄ =
√

8(2π)3/2σxσyσz is the mean collisional
volume for a harmonically trapped thermal cloud with
Gaussian widths σi [25]. The decay rate is characterized
by the lifetime τdr = (βdrn̄0)−1, where n̄0 = N0/V̄ is the
initial mean collisional density.

Typical decay curves for four different spin-polarized
ensembles are shown in Fig. 2. The fermions are prepared
in either the mF = +21/2, −19/2, or −17/2 state, as in
Fig. 1(a–c), respectively, and the bosons are prepared in
the mF = +8 state as in Fig. 1(a). The inset of Fig. 2
contains Stern-Gerlach-separated images of these states
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FIG. 2. (Color online) Population decay of fermionic 161Dy at
B = 0.410(5) G, T = 390(30) nK, and n̄0 = 7(2)× 1012 cm−3

for mF = +21/2 (triangles), −19/2 (circles), and −17/2
(diamonds) as well as bosonic 162Dy at B = 0.100(5) G,
T = 450(30) nK, and n̄0 = 3(1) × 1013 cm−3 for mF = +8
(squares). The solid curves are fits to the data using Eq. 3 [30].
(Inset) Stern-Gerlach images of initial states.

as well as the absolute ground states mF = −21/2 and
mF = −8. Decay of these states, which cannot undergo
dipolar relaxation at this B-field and temperature, are
not presented due to their much slower decay, limited
only by 1/γ = 21(1) s. Table I lists the experimental
decay rates βdr for the mF = −19/2 and −17/2 cases,
along with the corresponding theory predictions. Decays
are well-described by Eq. 3, as verified by χ2 analysis [25].

We expect from the form of Eq. 2 that the bosonic life-
time τdr should decrease as the magnetic field increases,
while the fermionic lifetime should increase. Both trends
are observed, as shown in Fig. 3(a) and (b). While
bosonic 162Dy decays rapidly, the fermionic gases at 1 G
live for approximately 1 s at this density.

Feshbach resonances can obscure the manifestation of
Eq. 2 by increasing losses due to three-body inelastic col-
lisions. Dysprosium has a high density of Feshbach res-
onances, even at low field [29], and atom loss spectra
for the different mF states were measured prior to in-
vestigating the magnetic field dependence of dipolar re-
laxation. Magnetic fields were selected to avoid increased
loss due to sharp Feshbach resonance features in the data
of Figs. 2–4. Feshbach spectra for the mF = +8 bosons
and mF = +21/2 fermions are shown in Fig. 3(c) and
(d), respectively; see Ref. [25] for additional spectra.

Figure 3(e) presents the βdr’s of the data in Figs. 3(a)
and (b). Data are in remarkable agreement with the the-
ory curves, though the discrepancy of the fermion βdr’s at
fields below ∼0.2 G warrants further investigation. The
errors in βdr’s are dominated by uncertainties in the tem-
peratures and trap frequencies, see Ref. [25].

While the relative suppression is evident in the form

β
−17/2;−17/2
dr β

−19/2;−19/2
dr β

−17/2;−19/2
dr β

−19/2;−21/2
dr

exp. 10(2) 4.1(7) 60(30) 3(1)

th. 6.3(3) 4.1(1) 37(1) 4.2(5)

TABLE I. Collisional loss rates in units of [×10−13 cm3 s−1].

of Eq. 2, we may gain a more intuitive understanding of
this relative suppression from an analysis of symmetriza-
tion, selection rules, and kinematics. Let us first consider
the spin relaxation channel depicted in Fig. 1(a) in which
spin-polarized fermions or bosons decay from the maxi-
mally stretched state mF = +F . This case corresponds
to the data in Figs. 3(a) and (b), respectively, and to the
sets of triangle and square data in Fig. 2. The collisional
reaction among fermions may be written:

Fermions: |F,mF ;F,mF 〉 ⊗ |p,ml〉 → (4)

|F,mF − 1;F,mF 〉S ⊗ |p,ml + 1〉,

where S denotes the symmetric superposition. While
this inelastic collision is allowed by dipolar-interaction
selection rules and by symmetrization, the reaction is
kinematically suppressed, as we now discuss.

The authors of Ref. [9] explain why kinematic suppres-
sion applies to sufficiently exothermic dipolar relaxation
in identical fermions but does not apply to elastic dipolar
scattering. The elastic dipolar cross section is a manifes-
tation of the long-range nature of the dipolar interaction:
all partial waves contribute, even as the collision energy
approaches zero. This may be seen by noting that the
integral employed to derive the elastic cross section in
Eq. 1—i.e., the integral of the input wavefunction with
1/r3 times the output wavefunction—involves wavefunc-
tions spatially oscillating at the same frequency. By con-
trast, the overlap integral used to derive the inelastic
cross section, Eq. 2, involves spatially mismatched wave-
functions. The outgoing wavefunction oscillates with a
frequency that becomes larger than the incoming wave-
function’s as the collision becomes more exothermic. The
contribution to the integral at large relative distance di-
minishes as the mismatch increases between these wave-
functions. Fewer higher-order (longer-ranged) partial
waves contribute until only that of the lowest s-wave in-
coming wavefunction remains: the inelastic dipolar in-
teraction becomes effectively short-ranged. We now see
why exothermic inelastic dipolar collisions among iden-
tical fermions are suppressed: contributions from the s-
wave incoming channel are forbidden while contributions
from all higher-order partial waves become ever more
kinematically suppressed. Indeed, no higher-order partial
waves contribute well below the threshold of the p-wave
centrifugal barrier ∼50 µK [5, 31]. Though differing in
detail, for identical fermions quantum statistics and kine-
matic suppression both play roles in the suppression of
inelastic dipolar scattering and in the suppression of non-
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FIG. 3. (Color online) Dipolar relaxation as depicted in Fig. 1(a) for bosonic 162Dy (mF = +8) and fermionic 161Dy (mF =
+21/2). (a)-(b) Two-body-loss lifetimes versus magnetic field. (c)-(d) Atom loss spectra presented as normalized atom number.
Locations of Feshbach resonances appear as dips in the atom loss. (e) Two-body collisional loss rates for 162Dy (squares) and
161Dy (triangles) at the same fields as in (a)-(d). See Fig. 2 caption and Ref. [25] for initial densities and temperatures. Curves
are collisional loss rates calculated using the expressions for σ1 and σ2 in Eq. 2 and in Ref. [25], respectively, and correspond to
162Dy (top), 161Dy (bottom) and distinguishable particles (middle) at T = 450(30) nK (top, middle) and 390(30) nK (bottom)
with no free parameters. Thickness represents temperature error [25][30].

dipolar elastic scattering. In contrast, there is no p-wave
threshold barrier in the bosonic case, since symmetriza-
tion allows an incoming s-wave channel.

We next investigate whether the fermionic suppression
of dipolar relaxation is present in collisions involving spin
mixtures. As predicted by theory, we observe suppres-
sion in the decay of the mF = − 19

2 ,−
21
2 mixture, but

no suppression in the decay of the mF = − 17
2 ,−

19
2 mix-

ture; see Fig. 4. These drastically different decay rates
are due to the different quantum statistics governing the
dominant relaxation processes. The only interspecies de-
cay channel available to the mF = − 19

2 ,−
21
2 mixture is

| − 19
2 ;− 21

2 〉 → | − 21
2 ;− 21

2 〉, as depicted in Fig. 1(d).
This process results in indistinguishable outgoing parti-
cles in the maximally stretched state mF =−F and, being
the time-reversed process of that depicted in Fig. 1(a),
exhibits fermionic suppression (ε = −1).

In contrast, the decay of the mF = − 17
2 ,−

19
2 mixture

is dominated by the process | − 17
2 ;− 19

2 〉 → | −
17
2 ;− 21

2 〉
involving distinguishable mixtures in both the incoming
and outgoing channels; see Fig. 1(f). This process ex-
hibits no fermionic suppression because the particular
particle flipping its spin is unambiguous since ∆mf = ±2
is not allowed for a single particle undergoing dipolar
relaxation. This cross section is given by the ε = 0
case of Eq. 2 with the different spin-dependent coefficient
F (F − 2)2σ1/(2F

3) [25]. The measured and predicted
interspecies βdr’s are also listed in Table I. To mea-
sure these rates, the spin populations are co-trapped and
subsequently separated and imaged via a Stern-Gerlach
measurement. The populations are fit to coupled rate
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FIG. 4. (Color online) Dipolar relaxation of spin mixtures.
Curves are fits to coupled two-body-loss rate equations; see
Ref. [25]. (a) Population decay of fermionic 161Dy in the
mF = −19/2 (circles) and mF = −21/2 (triangles) states at
T = 450(20) nK and B = 0.410(5) G. (b) 161Dy population
decay in the mF = −17/2 (diamonds) and mF = −19/2 (cir-
cles) states at T = 380(20) nK and 0.488(5) G. This inelastic
collision proceeds more rapidly than panel (a)’s due to dif-
ferent quantum statistics; see text. Initial density of each
spin state is 2(1) × 1012 cm−3 [30]. (Insets) Averages of 18
Stern-Gerlach images.

equations, as shown in Fig. 4, see [25].
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The enhancement in the dipolar relaxation of bosonic
162Dy versus magnetic field contrasts markedly with the
suppression in fermionic 161Dy. This manifestation of
universal inelastic dipolar scattering demonstrates that
dipolar relaxation is far less severe in highly dipolar
fermions than in highly dipolar bosons and will be less of
a hindrance to experiments using high-spin fermions in
studies of quantum many-body physics. For example, ob-
serving ferronematicity or BCS superfluidity in Dy would
require long-lived spin mixtures [16, 18], as would experi-
ments generating 1D spin-orbit coupling and non-Abelian
gauge fields in 2D with Raman laser fields [21, 32].
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