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Viruses that have lipid-membrane envelopes infect cells by fusing with the cell membrane to release
viral genes. Membrane fusion is known to be hindered by high kinetic barriers associated with drastic
structural rearrangements – yet viral infection, which occurs by fusion, proceeds on remarkably
short timescales. Here, we present a quantitative framework that captures the principles behind
the invasion strategy shared by all enveloped viruses. The key to this strategy – ligand-triggered
conformational changes in the viral proteins that pull the membranes together – is treated as a
set of concurrent, bias field-induced activated rate processes. The framework results in analytical
solutions for experimentally measurable characteristics of virus-cell fusion and enables us to express
the efficiency of the viral strategy in quantitative terms. The predictive value of the theory is
validated through simulations and illustrated through recent experimental data on influenza virus
infection.

PACS numbers:

Many viruses – including influenza, HIV and West Nile
virus – have lipid envelopes that enable them to enter
host cells and help avoid detection by the host immune
system. Viruses reproduce by hijacking the host repli-
cation machinery, which requires mixing viral genes into
the cell – a task that is accomplished by the fusion of the
viral and cell membranes [1]. However, membrane fusion
is a process that is highly energetically unfavorable, as it
involves high kinetic barriers due to extensive rearrange-
ments in the membranes and at the membrane/water in-
terface [2]. Various ways to induce membrane fusion in

vitro have been developed [3–6]. For virus-cell fusion to
occur in vivo on a physiologically viable timescale, viral
“fusion proteins” serve the required role of a catalyst.
Once exposed to a trigger (low pH or cell receptors), the
proteins, anchored in the viral membrane, first unfold
and insert into the target membrane, and then refold,
harnessing the energy liberated by the refolding to pull
the membranes together (Fig. 1).

This general strategy – a signal-triggered conforma-
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FIG. 1: Schematic of the invasion strategy of an enveloped
virus. (Left) The virus at the onset of fusion with the mem-
brane of the endosome, a low-pH compartment in the cell.
The region in black is shown in (a-e) at different stages of fu-
sion. (a) The virus is docked to the endosomal membrane. (b)
In response to low pH, viral fusion proteins extend and insert
into the target membrane, arresting the virus. (c) A sufficient
number of neighboring proteins (here, three) are inserted to
induce membrane curvature. (d) Proteins refold, pulling the
membranes together to attain hemifusion. (e) Fusion pore.
For a more detailed illustration, see [7].

tional change in fusion proteins that lowers the barriers
to membrane fusion – is shared by all enveloped viruses
despite their differences in structure and details of entry
[7]. In addition to viral infection, these principles oper-
ate in rapid neuronal communication enabled by Ca2+-
triggered fusion of synaptic vesicles with a cell, as well as
during fertilization, development and immune responses,
all of which involve fusion between cells [8].

The common principles that arise in the bewildering
diversity of biological fusion phenomena suggest that
these phenomena can be unified through a single physics
problem [9]. Here, we formulate a predictive statistical-
mechanical framework that attempts to capture – quan-
titatively – the common principles by which enveloped
viruses overcome high kinetic barriers to infect host cells
on a timescale of minutes. The theory establishes a di-
rect connection with a series of recent single-particle as-
says capable of measuring the kinetics of viral infection
[10, 11] and neuronal communication [12, 13]. The the-
ory results in analytical expressions for the key quan-
tities that have become accessible due to these experi-
ments: the dwell time distributions for the stages of fu-
sion as a function of an external signal. As we demon-
strate through the application to influenza virus fusion
measurements [10, 11], the expressions are suitable for a
direct, global fit to experimental data. The parameters
extracted from the fit yield, for any value of the external
signal, the activation barriers, the kinetic rates and the
required number of fusion proteins.

A paradigm for the viral infection mechanism is in-
fluenza, whose entry pathway is typical for many viruses
[1]. To build the framework, we first summarize some
key observations on influenza entry [1, 2, 7, 8, 10, 11]:

1) The virus enters the cell by endocytosis (engulfment
by the cell) and moves to the acidic cellular compart-
ment called endosome, where, exposed to low pH (. 5.5
[14]), fuses with the endosomal membrane to release viral
genes.
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2) Virus-endosome fusion is catalyzed by viral pro-
teins hemagglutinins, which, subject to low pH, un-
dergo a two-step irreversible conformational rearrange-
ment. First, the proteins extend and insert into the mem-
brane (Fig. 1b), arresting the virus. Second, the proteins
refold, pulling the viral and endosomal membranes to-
gether (Fig. 1d).

3) Fusion proceeds through hemifusion, in which only
the outer layers of the two bilayers have merged (Fig. 1d);
the hemifused bilayer then opens into a fusion pore
(Fig. 1e) delivering the viral contents into the cytosol.

4) Effects of mutations in fusion proteins indicate that
the rate-limiting step of the hemifusion process is the pro-
tein conformational transition into the extended state in
conjunction with the requirement that several neighbor-
ing proteins must undergo this transition. Once the re-
quired number of neighboring proteins have inserted into
the target membrane, the protein refolding and mem-
brane hemifusion occur very rapidly.

These observations help us identify the key states in
the kinetic scheme for virus-cell fusion:

D
Mk
−−→ I1

(M−1)k
−−−−−→ . . . INA

. . . INH

k1−→ H
k2−→ F, (1)

where k = k(pH) is the rate of the conformational tran-
sition into the extended state for a single protein. The
scheme describes a process initiated in the “docked” state
(D), in which a viral membrane patch containing M fu-
sion proteins is brought to proximity with the endoso-
mal membrane. Subject to a pH drop, proteins within
the patch independently undergo transitions into the ex-
tended state and insert into the target membrane (Ii for
i insertions). NA insertions anywhere in the patch ar-
rest the virus (INA

), NH neighboring insertions lead to
hemifusion (H), followed by fusion (F ).

Our goal is to derive a solution for an information-
rich quantity amenable to experimental measurement:
the distribution of times to reach hemifusion (Fig. 1d)
in response to a pH drop. We accomplish the derivation
in two steps. First, by solving the set of rate equations
[15] corresponding to the kinetic scheme in Eq. (1), we ar-
rive to a recurrence relation for the distribution of times
for n viral proteins anywhere in the patch of M proteins
to insert into the target membrane (Fig. 1b): p(t|n) =

(M−n+1)ke−(M−n+1)kt
∫ t

0 e
(M−n+1)kt′p(t′|n−1)dt′. We

find that this relation can be solved analytically:

p(t|n,M ; pH) =
M !k

(n− 1)!(M − n)!

(

ekt − 1
)n−1

e−Mkt.(2)

When n is set to be equal toNA, Eq. (2) describes the dis-
tribution of times from a pH drop to viral arrest with NA

viral proteins inserted into the membrane: pD→A(t, pH).
The result in Eq. (2) could have alternatively been ob-
tained simply by realizing its connection to the probabil-
ity of getting n successes, each with probability 1− e−kt,

out of M Bernoulli trials, described by the binomial dis-
tribution. In the limit of M ≫ n, Eq. (2) reduces to a
gamma-distribution [10, 11].
In the second step of deriving the hemifusion time dis-

tribution we account for the requirement that the in-
serted proteins must be neighbors to afford the distor-
tion of the membrane necessary for hemifusion (Fig. 1c-d)
[10, 11]. This requirement can be expressed as a convo-
lution of two distributions: the time distribution for n
protein insertions [Eq. (2)] and the probability to find n
insertions when NH neighbors first appear among them,

p(t, pH) =
∫M

0 p(t|n,M ; pH)p(n|NH ,M)dn. Since the
subsequent protein refolding and membrane hemifusion
are very fast, k1 ≫ Mk, the result of the convolution,
p(t, pH), is essentially equivalent to the hemifusion time
distribution. For a sufficiently large M , p(n|NH ,M) is
a Gaussian with some mean µ and variance σ2, and the
above convolution can be solved analytically to yield the
distribution of times between a pH drop and hemifusion:

pD→H(t, pH) =
Mke−kte

−
[(M−1)(1−e−kt)+1−µ]2

2[(M−1)(1−e−kt)e−kt+σ2]

(2π)
1

2 [(M − 1)(1− e−kt)e−kt + σ2]
1

2

.(3)

Describing the key quantity reported in single-particle
measurements of viral fusion, Eq. (3) emerges as a nat-
ural fitting tool for analyzing experimental data. Simple
scaling arguments [15] lead to the functional form of µ
and σ2, the mean and variance for the number of inser-
tions when NH neighbors first appear among them:

µ(M,NH) = aµ(NH)M
1− 1

NH + bµ(NH),

σ2(M,NH) = aσ(NH)M
2− 2

NH
+bσ(NH)

(4)

with the coefficients aµ,σ(NH), bµ,σ(NH) determined
by the geometry of the protein arrangement in
the viral membrane. With a hexagonal lattice as
the natural choice of protein arrangement, the co-
efficients are accurately described by aµ(NH) =
[

0.73(NH − 3.3)2 + 2.5
]− 1

NH , bµ(NH) = 0.86NH −

0.72, aσ(NH) =
[

2.8(NH − 3.7)2 + 10
]−1

, bσ(NH) =
[

0.0037(NH − 4.2)2 − 0.0068
]

N2
H .

Equation (3) describes the distribution of times elapsed
between the pH drop and hemifusion. Using the appro-
priate convolution, we derive the analogous distribution
of times elapsed between arrest and hemifusion:

pA→H(t, pH) =

(M −NA)ke
−kte

−
[(M−NA−1)(1−e−kt)+1−µ+NA]

2

2[(M−NA−1)(1−e−kt)e−kt+σ2]

(2π)
1

2 [(M −NA − 1)(1− e−kt)e−kt + σ2]
1

2

. (5)

The non-single-exponential time distributions for
hemifusion evident from Eq. (3) highlight the fact that
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attaining hemifusion is not a single-rate process. Nev-
ertheless, the time distribution in Eq. (3) allows us to
compute the mean time to reach hemifusion at a given
pH and the corresponding variance:

t̄D→H(pH) =
µ

M − (µ− 1)/2

1

k(pH)
,

(t− t̄)2D→H(pH) =
µ+ σ2

[M − (µ− 1)/2]2
1

k2(pH)
. (6)

In simple terms, the results for the mean and variance
reveal that it takes on average µ protein insertions, each
an exponential decay with the timescale ∼ [Mk(pH)]−1

and variance ∼ [Mk(pH)]−2, to attain hemifusion, and
the term σ2 arises from the fact that the insertion number
is distributed around µ with variance σ2.
To make Eqs. (3-6) applicable in the entire range of

the experimental pH values, we must establish the pH-
dependence of the rate of a transition of a single pro-
tein into the extended state, k(pH). While proton bind-
ing may be fast relative to protein bond fluctuations
[16, 17], proton binding to a folded protein can be slowed
down significantly due to the buried groups [17]. This
makes the number of protons, Q, that can contribute to
the protein conformational transition through binding, a
slow variable, rendering Q a reasonable reaction coordi-
nate for the transition. The combined Gibbs free energy
G(Q, pH) of a fusion protein and the proton reservoir at
a given pH can be related to the combined free energy
G0(Q) at physiological pH0 as [18]:

G(Q, pH) = G0(Q) + ln 10 kBTQ(pH − pH0). (7)

The expression for the rate k(pH) can now be de-
rived as Kramers’ rate of a thermally activated reaction,

k = D
[∫

well
dQe−G/kBT

∫

barrier
dQeG/kBT

]−1
[19], on

the potential in Eq. (7). With a generic shape of G0(Q)
featuring a well and a barrier, this leads to [15]:

k(pH) = k0

(

1−
2

3
ln 10 (pH0 − pH)

kBTQ
‡

∆G‡

)

1

2

×

exp

{

∆G‡

kBT

[

1−

(

1−
2

3
ln 10 (pH0−pH)

kBTQ
‡

∆G‡

)

3

2

]}

,(8)

where k0 is the rate at the physiological pH0, and ∆G‡

and Q‡ are the height and location of the activation bar-
rier at pH0. We note the close analogy between the pH-
dependent rate in Eq. (8) and the force-dependent rate
in [20].
To validate the developed theory, we apply it to the

time distributions, generated from simulations in the pH
range 4 <pH< 6, for two stages of the fusion process:
from the pH-drop to viral arrest (Fig. 2, left), and from
the pH-drop to hemifusion (Fig. 2, right). The simula-
tions model insertions of proteins, arranged on a hexag-
onal lattice with M sites, as transitions with the rate
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FIG. 2: Time distributions for attaining arrest (left) and
hemifusion (right) at different values of pH from numerical
simulations (histograms) and a global fit (curves) to the ana-
lytical expressions in Eq. (2) (left) and Eqs. (3,4) (right).

k(pH); the times tA and tH for the arrest and hemifusion
are recorded whenever NA and NH of such transitions
take place [15]. We find that Eqs. (2) and (3,4) reproduce
the simulated time distributions under all pH conditions
while accurately recovering the input parameters (Table
I). We note that the six-parameter fit is robust due to its
super-global nature: not only are the distributions for a
given process fit with a single expression (Eq. (2) for pH-
drop → arrest and Eq. (3) for pH-drop → hemifusion)
for all values of pH, but the fit also involves a single set
of parameters unifying these two processes.

Next, we apply the theory to recent experimental data
on influenza fusion [11] (Fig. 3). The stochastic errors
in the data made it necessary to fix one parameter (the
number of proteins in a patch, M) for a robust fit. The
fixed value M = 150 is based on the virus-cell contact
area and protein density on a virus [11]. We find that the
experimental time distributions are well fit by Eq. (2) and
Eqs. (4,5) under all pH conditions (Fig. 3, left and middle
panels). The fit extracts the number of proteins at the
arrest and hemifusion, which agree with the previously
reported values NA = 3.4 ± 0.2 and NH = 3.7 ± 0.6
at pH = 5.5 [11], as well as the energy barrier and the
protein insertion rate at physiological pH0 (Table I). The
extracted parameters at pH0 can now be used to predict
the barriers and timescales at any pH, as shown below.
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TABLE I: Parameters returned from a fit of the simulated data to theory (Fig. 2) in comparison to the input parameters; and
parameters extracted from the fit of experimental data [11] (Fig. 3).

M NA NH k0 (sec−1) ∆G‡(kBT ) Q‡

Simulation input 169 3 3 3×10−6 10 2

Simulation fit 197±35 3.01±0.06 2.93±0.12 (2.62±0.46)×10−6 9.96±0.04 1.99±0.01

Experiment fit fixed at 150 2.85±0.31 2.78±0.15 (3.29±0.95)×10−6 9.95±0.29 2.03±0.08
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FIG. 3: Experiment vs. theory: time distributions for attain-
ing different stages of influenza virus fusion under varying pH
conditions. Stages of fusion are indicated above each data
set. Experimental data from [11] (histograms) in the left and
middle panels were fit globally to Eq. (2) and Eq. (4,5), re-
spectively, with the same set of 5 free parameters used in both
fits in the entire pH range (curves, Table I). Remarkably, with
the parameters extracted from this fit, the theory is able to
reproduce an independent data set [10] that was not used in
the fit (Eq. (3,4), right panel).

Finally, with the parameters extracted from this fit, the
theory [Eqs. (3,4)] is able to predict an independent data
set [10] for the distributions of time between pH-drop and
hemifusion (Fig. 3, right panel) – which is remarkable, as
this data was not used in the fit.

The information extracted with the developed theory
helps us quantitatively appreciate the remarkable effi-
ciency of the viral invasion strategy (Fig. 4). In the ab-
sence of a catalyst, hemifusion of two membranes is pre-
cluded by an energy barrier as high as 100kBT [21, 22].

This presents a challenge to an enveloped virus, which
must fuse with the cell membrane in order to infect.
The solution to the high-barrier problem, adopted by the
viruses, is illustrated in Fig. 4: rather than directly con-
quering this 100kBT -high barrier, the virus first over-
comes a few (NH ≈ 3, see Table I) small barriers in
order to insert the proteins into the target membrane.
Each such barrier governs the rate of one insertion as
given by Eq. (8), where the expression in the exponen-
tial tells us how small each of these barriers is at a given

pH: ∆G(pH) = ∆G‡(1− 2
3 ln 10(pH0−pH) Q‡

∆G‡ )
3

2 , which
gives a mere 4kBT at the endosomal pH=5.5. Once these
small barriers are crossed, a new source of energy be-
comes available to the virus from the energetically fa-
vorable protein refolding. The refolding corresponds to
the downhill motion on the protein potential, releasing
enough free energy (∼ 30kBT from each of the NH pro-
teins [7, 23]) to nearly compensate for the barrier on the
membrane potential and to readily complete hemifusion
as described by Eq. (3).

To further appreciate the efficient strategy of the
viruses that detect the acidic environment, we make use
of Eq. (6) to compare the times elapsed between the pH
drop and hemifusion under two acidic conditions:

t̄D→H(pH)

t̄D→H(pH + 1)
≈ 10

Q‡
[

1− 2

3
ln 10(pH0−pH− 1

2
) Q‡

∆G‡

]
1
2

. (9)

Membrane potential Protein potential Membrane + protein potential

high barrier small barriers, then downhill lowered barrier

~100kBT

~4kBT

~30kBT

FIG. 4: Viral invasion strategy as a manipulation of the free
energy barriers. Left: A high barrier (striped) precludes viral
and cell membranes from spontaneous fusion. Middle: The
viral strategy is to first cross the few small barriers required
for protein unfolding and insertion; the subsequent protein
refolding corresponds to the downhill region (striped) on the
protein potential, which nearly compensates the uphill region
on the membrane potential. Right: The compensation signif-
icantly lowers the barrier to membrane fusion.
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For the endosomal pH value, t̄D→H(pH =
5.5)/t̄D→H(pH = 6.5) ≈ 46, i.e. only a one-unit de-
crease in pH provides more than an order-of-magnitude
acceleration of hemifusion.
The final stage (H → F in Eq. (1)) of the fusion pro-

cess is marked by the formation of a pore (Fig. 1e) and
occurs as a single-rate transition in influenza entry [10]:
pH→F (t) = k2e

−k2t. The reported timescale k−1
2 ≈ 18s

[10] of this step is nearly an order of magnitude faster
than the timescale of hemifusion at the endosomal pH,
t̄D→H ≈ 120s (Fig. 3). Because hemifusion-to-fusion
step has no considerable pH-dependence, membrane fu-
sion studies under applied pressure [6, 24] could prove
useful for extracting the parameters of this step.
The presented theory yields analytical expressions for

experimentally measurable characteristics of viral entry
and enables a description of the viral invasion strat-
egy in quantitative terms. Experiments on force- and
pH-induced transitions in single fusion proteins, control
of the fusion kinetics via protein mutations, and high-
resolution imaging of protein-membrane systems could
provide independent tests of the extracted parameters.
Due to the universality of principles behind the ubiqui-
tous phenomenon of membrane fusion, the theory can
be extended to other contexts, such as fusion between
vesicles and cells, and between cells themselves.
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