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We consider the geometric part of the effective action for Fractional Quantum Hall Effect (FQHE).
It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential
to obtain the correct gravitational linear response functions. In the lowest order in gradients the
linear response generating functional includes Chern-Simons, Wen-Zee and gravitational Chern-
Simons terms. The latter term has a contribution from the framing anomaly which fixes the value
of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere.
We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

Fractional quantum Hall (FQH) states exemplify gen-
uinely new states of matter with long range topologi-
cal order. These states owe their fascinating properties
to the strong interaction between the electrons partially
filling one or several Landau levels. Although much is
known about general properties of the FQH states, the
general problem of strongly interacting electrons in quan-
tizing magnetic field defies controlled analytical treat-
ment. To date FQH states are the prototype of a topo-
logical quantum fluid.
In addition to a quantized topological electromagnetic

response, FQH states (as well as general 2+1D topolog-
ical phases with broken time-reversal symmetry) exhibit
other geometric responses such as Hall viscosity [1–4] and
thermal Hall conductance [5–7]. These responses can be
computed via adiabatic arguments on a torus, directly
from the Laughlin wave function on a curved space [8–
10], using Chern-Simons gauge theory or the projective
parton construction [11]. Placing the FQH states on a
curved manifold proved to be a useful tool as it allowed
to probe more response functions [12, 13] and, therefore,
distinguish FQH states having identical charge response
[13].
Following the elegant construction of Ref. [13, 14] we

introduce the effective action of a general Abelian FQH
state on a curved state as

S = −
1

4π

∫

[

KIJa
IdaJ + 2qIAda

I + 2sIωda
I
]

. (1)

Here we use concise “form notation” so that AdaI ↔

ǫµνλAµ∂νa
I
λ d

3x, etc., and integration in Eq.(1) is taken
over three-dimensional space-time. The theory contains
κ hydrodynamic gauge fields aI , I = 1, . . . ,M coupled
to external electro-magnetic vector potential Aµ and to
external geometry through the abelian SO(2) spin con-
nection ωµ. KIJ is the (symmetric) M × M K-matrix,
qI is the charge vector and sJ is the spin vector [13]. We
will also use bold symbols for matrices and vectors, so
that K, q and s denote a K-matrix, charge vector and
spin vector correspondingly.

The action of Eq.(1) describes interactions of the con-
served currents jIµ ≡ 1

2π ǫ
µνλ∂µa

I
λ with the external gauge

field Aµ and the background geometry of the spatial man-
ifold parametrized by the Abelian spin connection ωµ.

Two remarks are in order. First, only the leading terms
in the gradient expansion are kept in Eq.(1). The first
term in Eq.(1) is the action of a Chern-Simons gauge the-
ory with gauge group U(1)M . This term is independent
of the metric and, up to some caveats discussed below, it
is the topological part of the action. The higher gradient
terms are, of course, present for any FQH state but are
suppressed by the gap in the spectrum. Second, as these
leading orders are written in terms of differential forms
it is clear that the action Eq.(1) does not depend on the
metric of the background other than through the spin
connection ω in the last term of Eq.(1).

The simplest quantum Hall state is described by a 1×1
K-matrix, K = 1, with q = 1 and s = 1/2 as charge and
spin “vectors” respectively. It corresponds to the filling
factor ν = 1, i.e., the spineless (spin polarized) electrons
filling up the lowest Landau level. In this case, the action
Eq.(1) reduces to

S = −
1

4π

∫

[

ada+ 2Ada+ ωda
]

. (2)

To find the electromagnetic and gravitational linear re-
sponse functions from Eq.(2) one has to integrate out
the hydrodynamic gauge field aµ to find the generat-
ing functional for linear responses. A traditional way of
treating this integration [13] is to substitute the solution
of saddle point equation for aµ following from Eq.(2),
aµ = −Aµ − ωµ/2, back into Eq.(2), and obtain

S′

eff =
1

4π

∫
(

A+
1

2
ω

)

d

(

A+
1

2
ω

)

. (3)

However, Eq.(3) does not agree with the result of di-
rect computation [15] of the effective action for non-
interacting fermions at ν = 1. The result found in Ref.
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[15] is

Seff =
1

4π

∫
(

A+
1

2
ω

)

d

(

A+
1

2
ω

)

−
1

48π

∫

ωdω .

(4)
Eq.(4) and Eq.(3) differ by the additional gravitational
Chern-Simons term.
In a recent publication [11], three of us used Chern-

Simons gauge theory (to represent flux attachment) and
projective parton constructions to derive, from micro-
scopic models, the effective actions of the hydrodynamic
fields and their coupling to the background geometry. A
key ingredient of this construction is that the worldlines
of these composite particles are always framed and, as
a result, the effective action yields the correct values of
the couplings of the Wen-Zee term and of the Hall vis-
cosity. However, a consistent theory of the gravitational
Chern-Simons term was lacking. Below we explain that
the appearance of this term is not accidental, but is a
consequence of a general phenomenon that is present in
the quantum Chern-Simons theory known as the framing
anomaly [16, 17]. We will see that the framing anomaly is
the key ingredient to obtain a consistent effective theory
for all FQH states.
Main results. In this work we generalize the action of

Eq.(4) to arbitrary Abelian and non-Abelian FQH states,
providing a generating functional in the leading order in
derivatives. For general Abelian FQH states coupled to
external electromagnetic field and geometry defined by
Eq.(1) the topological part of the effective action is given
by

Seff = SK + Sanom , (5)

SK =
1

4π

∫

(

qTA+ sTω
)

K−1d (qA+ sω) , (6)

Sanom = −
c

96π

∫

tr

(

ΓdΓ +
2

3
Γ3

)

, (7)

where we used matrix notations for K-matrix, spin and
charge vectors. The contribution shown in Eq.(7) is the
framing anomaly of quantum Chern-Simons theory [16,
17]. The coefficient c is the chiral central charge which,
for a general Abelian theory, is equal to

c = sgnK , (8)

where sgnK = N+−N− is the signature of theK-matrix.
N± is the number of positive (negative) eigenvalues of
the K matrix. Then, as it will be explained below, the
general formula of Eq.(7) reduces to

Sanom = −
c

48π

∫

ωdω , (9)

for a particular choice of geometric background. As a
check, it is easy to see that Eq.(9) reduces to the last
term of Eq.(4) for K = 1.

Using the projective parton approach [18], we can also
find the generalization of Eq.(5)-Eq.(7) for non-Abelian
FQH states such as Zk parafermion states. The only yet
crucial difference here from the Abelian states is that
the central charges of the non-Abelian states are rational
fractions, instead of an integer. More precisely, the chiral
edge theories of the non-Abelian states are the G/H-
coset conformal field theory (CFT) whose central charge
is cG/H = cG − cH where

cG =
k dim(G)

k + h
(10)

is a rational number. In Ref. [11] it was noted that a
naive calculation of the gravitational anomaly term of
Eq.(9) using the projective parton construction yields an
incorrect (integer) value for the chiral central charge. In
this Letter, we show that the framing anomaly, which was
missing in the work [11], yields in all cases the correct
value of the chiral central charge.
Geometric responses. Let us relate the contribution

of the framing anomaly to the effective action to physical
observables. We focus here on various geometric response
functions. These response functions are known to be of
interest in the physics of FQHE and have been studied
previously. They include the thermal Hall conductance
[5–7] and the Hall viscosity [1–4].
The framing anomaly contribution to the effective ac-

tion can be considered as the bulk manifestation of the
thermal Hall conductance κH which, for a quantum Hall
fluid, is known to be proportional to the chiral central
charge of the chiral edge states of the FQH fluid [5–7]

κH = c
πk2BT

6
. (11)

where c is the central charge. On the other hand, in the
presence of the background curvature the gravitational
Chern-Simons term also contributes to the Hall viscosity.
If the quantum Hall state is on a sphere of constant Ricci
curvature R, then the Hall viscosity is given by [15, 19]

ηH =
s̄

2
n−

c

24

R

4π
. (12)

The last term in Eq.(12) is a finite size correction to the
well known relation ηH = s̄

2n. The appearance of the
chiral central charge c is, therefore, very natural. We
should note that the gravitational Chern-Simons term
does not describe the bulk thermal Hall effect [20]. The
latter can be understood as a response to the geometry
with temporal torsion and is not topologically protected
[21, 22].
Framing anomaly. Before proceeding to applications

of general results to particular FQH states we give a very
brief review of the framing anomaly tailored to our pur-
poses. The integration over the hydrodynamic Chern-
Simons gauge field in the action of the type Eq.(2) is done
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by substituting the solutions of equations of motion back
into the action. While it is true that stationary phase ap-
proximation for the gaussian integral is exact there is a
subtlety that arises when Chern-Simons theory is defined
on a curved space.
It is well known that the Chern-Simons theory is topo-

logical at the classical level, i.e. it does not depend on the
metric and has vanishing stress-energy tensor. However,
this is not true for the full quantum theory [16, 17]. The
reason is that while the action is metric-independent, the
path integral measure does depend on metric in a non-
trivial way. Indeed, the definition of the path integral
measure DA requires gauge fixing, which should be de-
fined in a covariant way to avoid dependence of the parti-
tion function on the choice of coordinates. For example,
the gauge fixing can be done by including an additional
gauge fixing term into the action

Sφ =

∫

dV φDµAµ , (13)

with the integration over the auxiliary field φ included
in the path integral. The term Eq.(13) depends on the
geometry of the manifold through both covariant deriva-
tive Dµ and the invariant space-time integration measure
dV . The term of Eq.(13) is understood as a part of the
definition of the integration measure DAµ.
The dependence of the full partition function Z on the

metric of the manifold can be quantified [16, 17]. Con-
sider the partition function of the Chern-Simons theory
with arbitrary compact, semi-simple group G at level k.
Its partition function is given by[16]

Z =

∫

DADφ exp

{

−i
k

4π

∫

M

tr

(

AdA +
2

3
A3

)

− iSφ

}

= τ exp

{

−i
c

96π

∫

M

tr

(

ΩdΩ +
2

3
Ω3

)}

, (14)

where τ is the Ray-Singer analytic torsion [23]. The latter
is a topological invariant and is not important for the
upcoming discussion. The phase of the partition function
Z is given by the framing anomaly and c is the chiral
central charge given by Eq.(10).
In Eq.(14) Ωa

b,µ is the Levi-Civita SO(1, 2) spin con-
nection [24]. We denote it by Ω to avoid the confusion
with the SO(2) spin connection ω (see below). In this
work we are interested in quantum Hall states, which are
inherently non-relativistic systems. For this reason we
turn off the temporal components of the spin connection
Ωa

0,µ = Ω0
b,µ = 0 because non-relativistic physical sys-

tems generally do not couple to these components. With
this choice the SO(2) component of the spin connection
ωµ ≡ Ω1

2,µ is precisely the one used in Eq.(1). Then, we
obtain

c

96π

∫

M

tr

(

ΩdΩ +
2

3
Ω3

)

=
c

48π

∫

M

ωdω . (15)

Relation to the gravitational anomaly. Here we em-
phasize the relation of the framing anomaly to the edge
theory of FQHE. The edge theory has a contribution from
the gravitational anomaly [25, 26] which can be related
to the bulk gravitational Chern-Simons term in the fol-
lowing way. First, let us rewrite the gravitational Chern-
Simons term Eq.(15) replacing the SO(1, 2) spin connec-
tion Ω by Christoffel symbols as [27]

c

96π

∫

tr

(

ΩdΩ +
2

3
Ω3

)

=
c

96π

∫

tr

(

ΓdΓ +
2

3
Γ3

)

−
c

288π

∫

tr(e−1de)3 , (16)

The last term in this relation describes the winding num-
ber of the dreibeins e and is irrelevant here since the
variations of this term on a closed manifold vanish [28].

The gravitational Chern-Simons term written in terms
of Christoffel symbols Γµ

ν,ρ is not invariant with respect
to changes of coordinates in the presence of a boundary
and induces the gravitational anomaly of the edge the-
ory [29]. Thus, in general expressions such as Eq.(7),
we present the contributions of the framing anomaly in
terms of Christoffel symbols to emphasize the relation to
the gravitational anomaly and, in turn, to the thermal
Hall effect [6].

Effective action for Abelian FQH states. The effective
action for a general Abelian FQH state can be written as

Seff =
ν

4π

∫

(

(A+ s̄ω)d(A + s̄ω) + βωdω
)

−
c

96π

∫

tr

[

ΓdΓ +
2

3
Γ3

]

, (17)

where ν is the filling fraction, s̄ is the average orbital
spin, β = νs − νs̄2 is the orbital spin variance, and νs is
the “spin filling fraction” [13], given by

ν = qTK−1q, νs̄ = qTK−1s, νs = sTK−1s . (18)

For the Laughlin series at the filling ν = 1
2r+1 we have

s̄ = r +
1

2
, β = 0 , c = 1 . (19)

The K-matrix for the Jain series can be found in Ref.
[14]. For the Jain series at the filling ν = p

2rp±1 (with

p, r ∈ Z and p ≥ 1, r ≥ 1) we have

s̄ = ±r+
p

2
, β = ±

p(p2 − 1)

12
, c = 1± (p− 1) . (20)

The relations Eqs.(19)-(20) can be derived through the
flux attachment procedure [11, 30] or by the projective
parton construction [31]. One can use Eqs.(19)-Eq.(20)
to compute Hall viscosity and thermal Hall conductivity
from Eqs.(11)-(12).
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Non-Abelian states. In the following we will derive
the effective action for the non-abelian Zk Read-Rezayi
(RR) parafermion states [32] at filling ν = k

Mk+2 . While
the problem of deriving the bulk effective theory for
a generic non-abelian gapped FQH state is not solved,
the answer for a variety of different states can be ob-
tained through the parton construction [18, 31]. The
effective bulk theory for the non-abelian Zk Read-Rezayi
parafermion states at filling ν = k

Mk+2 is given by
the (U(M) × Sp(2k))1 Chern-Simons theory [18] and
U(1)2k+M

1 Abelian theory.

S =
1

4π

∫

tr

[

ada+
2

3
a3
]

−
1

4π

∫

tr
[

bdb+ 2(QA+ Sω)db
]

, (21)

where Q = 1
kM+2diag (12k, k× 1M ) and S = 1

212k+M are
(2k+M)×(2k+M) charge and spin matrices. There are
2k +M hydrodynamic U(1) gauge fields b and one non-
abelian U(M)× Sp(2k) field a. In the second line of Eq.
(21) we have coupled the bulk theory to external electro-
magnetic field and geometry as in Eq. (1) (see [11]). In
Eq.(21) we have essentially used the coset construction
of [33]. Note that the introduction of the abelian fields
b does not change the degeneracy on the higher genus
surfaces because the corresponding K-matrix is unity.
Integration over the low energy degrees of freedom im-

plies the universal effective action Eq.(17) with the filling
factor, the average orbital spin, and the orbital spin vari-
ance given by

ν = TrQ2 =
k

Mk + 2
, (22)

s̄ = ν−1TrQS =
M + 2

2
, (23)

β = ν−1TrS2 − s̄2 = M
(k − 1)2

2k
. (24)

The chiral central charge c of the boundary
U(1)2k+M

1 /(U(M) × Sp(2k))1 coset CFT is given
by

c = cU(1)2k+M

1

− cU(M)1 − cSp(2k)1 =
3k

k + 2
, (25)

which is the correct value of the central charge of the
edge states of the RR parafermion states.
Conclusions. We have derived the effective action for

arbitrary FQH states on a curved manifold. It turned
out to be very important that quantum Chern-Simons
theory depends on the metric through the measure of the
functional integral. This metric dependence ultimately
leads to an additional gravitational Chern-Simons term
in the effective action that fixes the value of thermal Hall
conductivity and the “finite size” correction to the Hall
viscosity. We have derived the effective action for the
various abelian states and also found complete agreement
with previously known results.
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