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We formulate a geometric framework that allows to study momentum and energy transport in
non-relativistic systems. It amounts to coupling of the non-relativistic system to the Newton-
Cartan geometry with torsion. The approach generalizes the classic Luttinger’s formulation of
thermal transport. In particular, we clarify the geometric meaning of the fields conjugated to
energy and energy current. These fields describe the geometric background with non-vanishing
temporal torsion. We use the developed formalism to construct the equilibrium partition function
of a non-relativistic system coupled to the NC geometry in 2+1 dimensions and to derive various
thermodynamic relations.

1. Introduction. In the seminal work of 1964 Lut-
tinger developed a linear response theory for thermoelec-
tric transport. [1] An essential part of his approach is the
coupling of the many body system to an auxiliary exter-
nal “gravitational potential” conjugated to the energy
density. The evolution of the energy density is defined
by the divergence of energy current, the latter is a funda-
mental object in the theory of thermal transport. In this
paper we identify the appropriate sources of the momen-
tum, energy, and energy current in non-relativistic sys-
tems. We use the developed general formalism to derive
thermodynamic relations involving thermal Hall current
in the presence of external fields.
In relativistic systems the energy density and the cor-

responding current are naturally combined into a stress-
energy tensor T µν coupled to an external gravitational
field described by the spacetime metric. The energy-
momentum and charge conservation laws can be written
as

∂µT
µν = F νρJρ, ∂µJ

µ = 0, (1)

where T µν is a stress-energy tensor defined as a response
to the external metric gµν . Here, we introduced an elec-
tric current Jµ and an external electromagnetic field
Fνρ = ∂νAρ − ∂ρAν . Given a matter action S we can
compute the energy-momentum tensor and the electric
current as

T µν =
2√
g

δS

δgµν
, Jµ =

1√
g

δS

δAµ
. (2)

In the absence of the external sources the first equation
in (1) encodes two conservation laws: conservation of
momentum and conservation of energy

Ṗ j + ∂iT
ij = 0, ε̇+ ∂iJ

i
E = 0, (3)

where we introduced momentum, energy and energy cur-
rent as P j ≡ T 0j , ε = T 00 and J iE = T i0. These nota-
tions will be very natural later on. In relativistic systems
the stress-energy tensor T µν (being defined as response

to the external space-time metric) is symmetric. This im-
plies equality of momentum and energy current P i = J iE .

In non-relativistic systems this equality no longer
holds. For example, for a single massive non-relativistic
particle with mass m moving with velocity vi we have

P i = mvi and J iE = mv2

2 vi.

The first result of this Letter is the identification of
the appropriate sources for the momentum, energy and
energy current. We introduce a non-relativistic analogue
of (2). This is achieved by replacing the space-time met-
ric gµν by a different geometric data known as Newton-
Cartan (NC) geometry with torsion. We explain how to
couple a given non-relativistic system to the NC geom-
etry. Our analysis does not assume Galilean symmetry
and is valid in systems without boost symmetry. The
NC geometry has appeared in the context of Quantum
Hall effect [2], non-relativistic (Lifshitz) Holography [3]
and fluid dynamics [4]. The relation between the ther-
mal transport and geometry with (and without) torsion
was also discussed in [5, 6]. The torsional responses in
relativistic systems were discussed in [7–9].

While the coupling to NC geometry can be used in any
non-relativistic field theory we are mainly motivated by
applications to non-relativistic fluid dynamics. In fluid
dynamics in addition to standard symmetry constraints
of field theory there is an additional set of conditions that
ensure that solutions of (3) are compatible with the (lo-
cal) second law of thermodynamics [10]. Recently these
constraints became a subject of active research in rela-
tivistic hydrodynamics [11, 12]. It turns out that some
of these constraints can be obtained systematically de-
manding that solutions of equations (1) consistently de-
scribe thermal equilibrium in the presence of static ex-
ternal sources [11, 13]. Here we are interested in non-
relativistic applications of these ideas.

The second result of this Letter is a construction
of the generating functional of Euclidean static corre-
lation functions consistent with local space-time and
gauge symmetries. Consistency of these static correla-
tion functions with stationary solutions of non-relativistic
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hydrodynamics provide constraints on the latter. We
note here that equilibrium analysis should be valid for
rather general, not necessarily Galilean invariant sys-
tems. Throughout the letter we assume that we are in
2+1 dimensions, but most of the analysis is valid in any
dimension with obvious modifications.
2. Coupling to Newton-Cartan geometry. Conserva-

tion laws (3) follow from the space and time translation
symmetries. In what follows we will introduce external
fields that naturally couple to momentum, energy and
energy current by making these symmetries local.
Before going to general formulations we consider an

example of free fermions. The action is given by

S =

∫

dtd2x

(

iΨ†∂0Ψ− 1

2m
(∂AΨ)†(∂AΨ)

)

. (4)

In order to make this action coordinate independent, i.e.
gauge the time and space translations we introduce frame
fields (or vielbeins) Eµa and their inverse eaµ [14] and re-
place the derivatives in (4) as follows

∂A → EµA∂µ, ∂0 → Eµ0 ∂µ . (5)

The second replacement can be understood as a material
derivative so that the vielbein Eµ0 is the velocity field.
Then the action (4) takes the form

S =

∫

dV L ,

L =

(

i

2
vµ(Ψ†∂µΨ− ∂µΨ

†Ψ)− hµν

2m
∂µΨ

†∂νΨ

)

. (6)

Our conventions a, b, . . . = 0, 1, 2 and µ, ν, . . . = 0, 1, 2,
also A,B, . . . = 1, 2 and i, j, . . . = 1, 2. General coordi-
nate transformations act on the greek indices and local
frame transformations act on the latin a, b, . . . indices.
We have defined a degenerate “metric” hµν =

δABEµAE
ν
B , 1-form nµ = e0µ and a vector vµ = Eµ0 . No-

tice, that the spatial part of the metric hij is a (inverse)
metric on a fixed time slice, it is symmetric and invert-
ible. The introduced objects are not independent, but
obey the relations

vµnµ = 1, hµνnν = 0. (7)

These are precisely the conditions satisfied by the NC
geometry data [2, 15][16]. Some detailed discussion of
the first order (i.e. using the vielbeins) formulation of
the NC geometry can be found in [17, 18].
The action (6) can be viewed as an action (4) written

in an arbitrary coordinate system. The invariant volume

element is dV = edtd2x with e =
√

det(eaµe
a
ν). Due to

the spatial isotropy of (4) the vielbeins naturally combine
into the degenerate metric hµν . Similarly, the temporal
components of vielbeins (denoted vµ and nµ) stand aside
in (6) explicitly breaking the (local) Lorentz symmetry

down to SO(2). If the physical system was anisotropic
the replacement (5) would still make sense, but one would
have to treat each vielbein as an independent object, i.e.
not constrained by any local symmetries of the tangent
space.

To couple a generic matter action to the NC geometry
one has to proceed in the same way as for the example
considered above. Namely, one should modify the deriva-
tives according to (5). Then the objects vµ, nµ and hµν

(NC data) will naturally arise (we assume spatial isotropy
from now on). When the 1-form nµ is not closed we de-
fine the Newton-Cartan temporal torsion 2-form as

Tµν = ∂µnν − ∂νnµ. (8)

In practice, it is convenient to use a particular
parametrization of the NC background fields. Let us
specify the spatial part hij of the degenerate metric and
assume that nµ = (n0, ni) and vµ = (v0, vi) are also
specified and satisfy the first relation in (7). Then we

find from other relations in (7) hµν =

(

n2

n2

0

− ni

n0

− ni

n0

hij

)

,

where we defined ni = hijnj , n
2 = ninjh

ij . In this
parametrization the invariant volume element is given
by dV =

√
hn0dtd

2x, where we have denoted det(hij) =
h−1.

The momentum, stress, energy and energy current are
identified as responses to the NC geometry as follows

Pi = −v0 δS
δvi

, Tij = −2
δS

δhij
, (9)

ε = −
(

n0
δS

δn0
− v0

δS

δv0

)

, J iE = −n0
δS

δni
. (10)

where we turn off the fields ni and vi after the variation
is taken.

The introduced NC geometry is general and reduces
to some cases considered in literature. For example, the
choice nµ = (1, 0, 0), v = (1, vi) corresponds to the tor-

sionless NC background which turned out to be conve-
nient in studying Galilean invariant actions [2, 19–22].

Another particular limit is given by nµ = (eψ, 0, 0),
vν = (e−ψ, 0, 0). This is an example of the NC geometry
with temporal torsion. The torsion is given by

T = eψ(∂iψ)dx
i ∧ dt . (11)

In this case the only non-vanishing component of the tor-
sion tensor is T0i. This NC geometry essentially appeared
in the procedure introduced by Luttinger [1, 23]. The
field ψ is precisely the “gravitational potential” intro-
duced in [1]. The disadvantage of this choice of geometry
is the absence of the field ni that couples to the energy
current.

In the following we consider a general case keeping all
of the components of NC geometry turned on.
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Before proceeding let us illustrate how one can derive
expressions for conserved currents using the coupling to
NC geometry.
Consider a system of free fermions. We have already

introduced the NC fields into the action of free fermions
in (6). Then the direct application of (10), using equa-
tions of motion, and turning off NC fields after the vari-
ations we obtain the familiar expressions for energy and
energy current in flat space

ε = − 1

2m
(∂iΨ)†(∂iΨ) , (12)

JEi =
i

4m2

(

∂2Ψ†∂iΨ− ∂iΨ
†∂2Ψ

)

. (13)

3. Equilibrium. We construct the most general par-
tition function, consistent with time independent, local
space and time translations and gauge symmetries. The
partition function can be written as a Euclidian func-
tional integral

W = − ln tr exp

{

−H − µ̄N

T̄

}

= − ln

∫

DΨDΨ†e−SE .

(14)
Here we introduced a Euclidean action [24]

SE [{Ψ,Ψ†};Aµ, nµ, vµ, hij ] =
∫

d2x
√
h

∮ 1/T̄

0

dτn0LE ,
(15)

where {Ψ,Ψ†} refers to a collection of matter fields. This
action is coupled to the NC geometry as explained in the
previous section. We have also coupled the theory to
external e/m field described by the vector potential Aµ.
The time-independent field n0 can be viewed as an

inhomogeneous temperature T (x) defined according to

∮ 1/T̄

0

dτn0 →
∮ 1/T (x)

0

dτ ′,
1

T (x)
=
n0

T̄
. (16)

The NC geometry allows to introduce spatial variations
in the size of the compact imaginary time direction.
Rescaling the Euclidean time τ → τ ′/T̄ in (15) and

correspondingly transforming the fields n0, A0, v
0 we find

that the action depends on T̄ as follows

SE = SE

[

Ψ,Ψ†;
A0

T̄
,
n0

T̄
, v0T̄ , Ai,

ni
n0
T̄ , vi, hij

]

. (17)

In (local) equilibrium external fields do not depend on
Euclidean time. The generating functionalW depends on
the temperature T and external sources. We also assume
that W can be written as an integral of a local density
so that

W =

∫

d2x
√
h
n0

T̄
P
(

A0

T̄
,
n0

T̄
, v0T̄ , Ai,

ni
n0
T̄ , vi, hij

)

,

(18)
where we have already replaced the integral over Eu-
clidean time by the overall factor 1/T̄ . It is worth noting

that results derived from the Euclidean generating func-
tional can be used to obtain the zero frequency correla-
tion functions in real time upon a Wick rotation.
4. Local time shifts. We are mainly interested in the

thermal transport, so from now on we set the external
field vi = 0 and parametrize v0 = 1

n0

≡ e−ψ in order to
satisfy (7). This field configuration is preserved by the
time independent space and time translations.
The transformation law of the external field ni under

a local time shift t→ t+ ζ(x) takes form

δ(e−ψni) = −∂iζ , (19)

i.e. the field e−ψni transforms like a U(1) gauge field
under a local time shift. This field can be regarded as a
connection on an S1 bundle over the base manifold, where
S1 is the thermal circle. The field strength is related to
the NC temporal torsion.
It is convenient to introduce Ai = Ai−A0e

−ψni. This
field transform like a gauge field under electro-magnetic
gauge transformations and it is invariant under local time
shifts.
Invariance of the generating functional w.r.t. the

transformation (19) implies a local conservation law of
the thermal current

J iQ = − T̄√
h

(

δW

δe−ψni
+A0

δW

δAi

)

= J iE −A0J
i . (20)

This current is conserved

∇iJ
i
Q = 0 , (21)

where ∇iX
i = 1√

h
∂i

(√
hX i

)

is the covariant diver-
gence.
5. Generating functional in derivative expansion We

present the partition function as an expansion in deriva-
tives of the external NC and electromagnetic fields. We
consider the following generating functional

W =

∫

d2x
√
h
1

T
P (µ, T,B, BE) , (22)

where we have defined the local chemical potential and
temperature in terms if external fields.

1

T (x)
=
eψ

T̄
, µ(x) = e−ψA0(x) , (23)

and defined gauge invariant (pseudo) scalars

B = ǫij∂iAj , BE = ǫij∂i(e
−ψnj) . (24)

Writing (22) we assumed that both B and B might be
large, while their derivatives are small and can be ne-
glected. We also assumed that gradients of both µ and
T are small.
The generating functional (22) encodes various local

thermodynamic quantities and relations. For example,
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the energy (in flat space) can be found with the help of
(10), appropriately modified for the presence of the gauge
field

ε = T̄
δW

δeψ
+ TA0

δW

δA0
=
∂(P/T )
∂(1/T )

− µ
∂P
∂µ

= P + sT + nµ , (25)

where we made the identifications

n(x) = T̄
δW

δA0
= −∂P

∂µ
(26)

and

s(x) = −∂P
∂T

. (27)

The relation (25) suggests that P(µ, T,B, BE) is the den-
sity of the grand thermodynamic potential (in the pres-
ence of external fields) and that (25) is the local version
of the known thermodynamic relation P = E− T̄ S− µ̄N .

It is instructive to find the pressure in the presence of
external fields, also known as internal pressure

Pint = T̄
δW

δhi i
= P(0) −MB −MEBE , (28)

where we have introduced the magnetizationM = eψ ∂P∂B ,

the energy magnetization ME = eψ ∂P
∂BE

and P(0) is the
pressure at zero magnetic field.

The additional contribution to the pressure given by
the second term in (28) comes from the Lorentz force act-
ing on magnetization currents. The last term of (28) gives
a similar contribution present in non-vanishing back-
ground field BE .

6. Magnetization currents. While all transport cur-
rents vanish in thermal equilibrium, there are still elec-
tric and energy magnetization currents circulating in a
material even at equilibrium. These currents cannot be
measured in transport experiments [23]. However, e.g.,
the electric magnetization current can be in principle ob-
served in spectroscopy experiments or by measuring the
magnetic field created by moving charges. The energy
current can (at least in principle) be observed by the
frame drag [25] due to distortions in the gravitational
field created by the flow of energy. In the presence of
the inhomogeneous external fields magnetization currents
can flow in the bulk of the material, otherwise they are
concentrated on the boundary of the sample.

Knowing magnetization currents is important as this
knowledge can be used to separate transport currents
from the magnetization ones for systems driven out of
equilibrium [23]. Also, for a particular case of the chem-
ical potential lying in the excitation gap the magneti-
zation currents are the only currents responsible for the
Hall effect [26].

In the following we consider both electric and thermal
magnetization currents. They are given, respectively, by

J i = T̄
δW

δAi
= ǫij∂jM , (29)

J iQ = ǫij∂jME . (30)

The currents (29) and (30) are conserved in the presence
of arbitrary temperature profile T (x) set by (23) and co-
incide with the ones found in [23, 27, 28] at the level of
linear response.
We note here that usually the energy magnetization

ME is defined by the Eq. (30) while the NC ”mag-
netic field” BE (usually denoted as Bg and referred to
as gravimagnetic field) is defined as a quantity thermo-
dynamically conjugated to ME. In this work we clarified
how one can systematically introduce external fields ni
in non-relativistic system and couple the system to BE
(24). Previous approaches explicitly used the presence
of Lorentz symmetry [25, 28] and cannot be applied in
majority of condensed matter systems.
7. Streda formulas. It is possible to express the Hall

conductivity and other parity odd responses purely in
terms of derivatives of thermodynamic quantities. We
define electric and thermal conductivities as

J i = ǫij
(

σH∂iµ+ σTH∂iT
)

, (31)

J iE = ǫij (κµH∂iµ+ κH∂iT ) . (32)

Comparing with (29-30) we obtain using the Maxwell’s
relations [29]

σH =

(

∂M

∂µ

)

T,B,BE

=

(

∂n

∂B

)

T,µ,BE

, (33)

σTH =

(

∂M

∂T

)

µ,B,BE

=

(

∂s

∂B

)

T,µ,BE

, (34)

κµH =

(

∂ME

∂µ

)

T,B,BE

=

(

∂n

∂BE

)

T,µ,B
, (35)

κH =

(

∂ME

∂T

)

µ,B,BE

=

(

∂s

∂BE

)

T,µ,B
. (36)

These are thermodynamic Streda-type formulas [30, 31]
for the response coefficients.
8. Galilean and Lorentz symmetries. So far we as-

sumed that the (un-perturbed) system under considera-
tion is gauge invariant, spatially isotropic and homoge-
neous, and time translation invariant. In this general case
there are no additional relations between electric current,
momentum and energy current. Several new relations ap-
pear if additional symmetries are present. For simplicity,
we assume below that the underlying microscopic system
consists of charged particles of a single species or several
species with the same e/m (electric charge to mass) ratio.
If the system is Galilean invariant the electric current

is proportional to the momentum J i = e
mP

i, therefore,
the magnetization density is proportional to the density
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of the angular momentum M = e
mLz. Then from (33)

we have

σH =
e

m

(

∂Lz
∂µ

)

T,B,BE

, (37)

that is Hall conductivity can be expressed in terms of
derivatives of the angular momentum.
If the system is Lorentz invariant then there is an addi-

tional equality between momentum and energy current as
we pointed out in the introduction J iE = P i and, there-
fore, ME = Lz. Therefore, we have another version of
Streda formula for thermal Hall conductivity [28]

κH =

(

∂Lz
∂T

)

µ,B,BE

. (38)

In general case, when no additional symmetries are
present the angular momentum is not related to either
electric or thermal magnetization and the relations (37)-
(38) do not hold.
9. Conclusions. To conclude, it is shown that cou-

pling the physical system to the Newton-Cartan geom-
etry introduces the appropriate sources for energy, mo-
mentum, and energy current. Variations of the action
with respect to different components of the NC geome-
try give familiar expressions for energy, momentum, and
energy current densities. It turns out that in order to
introduce the temperature gradients one has to couple a
physical system to the NC geometry with temporal tor-

sion. We stress that the formalism does not assume ei-
ther Lorentz or Galilean symmetry. Those symmetries
can be imposed afterwards to restrict the responses of
the physical system.
The developed formalism was used to construct a

general local equilibrium partition function of a non-
relativistic system. With the partition function at hand
known thermodynamic relations have been obtained in
the presence of external gauge and Newton-Cartan fields.
It was found that upon linearization the found general
expressions for electric and thermal magnetization cur-
rents agree with the linear response expressions known
in literature.
The constructed formalism is expected to have many

potential applications in condensed matter systems and
hydrodynamics. For example, the general geometric ef-
fective action constructed in the presence of the torsional
NC background will not be restricted by the the Lorentz
symmetry and, therefore, is more natural in condensed
matter context. The Galilean symmetry can be imple-
mented by adding additional constraints on the action
coupled to NC geometry. The generalization to systems
with internal degrees of freedom such as spin may prove
to be of interest in the context of spin Hall effect.
We acknowledge discussions with B. Bradlyn, A. Cap-

pelli, G. Monteiro, S. Moroz, M. Rocek, D. Son and es-
pecially K. Jensen. The work of A.G.A. was supported
by the NSF under grant no. DMR-1206790.

During the preparation of this work we were made
aware of complementary results [32]. After the work was
completed we learned about the work [33] where the NC
geometry with torsion was related to the energy trans-
port in Galilean invariant systems.
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