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A recently proposed configuration-interaction based impurity solver is used in combination with
the single-site and four-site cluster dynamical mean field approximations to investigate the three-
band copper oxide model believed to describe the electronic structure of high transition temperature
copper-oxide superconductors. Use of the configuration interaction solver enables verification of con-
vergence of results with respect to number of bath orbitals. The spatial correlations included in the
cluster approximation substantially shift the metal-insulator phase boundary relative to the predic-
tion of the single-site approximation and increase the predicted energy gap of the insulating phase
by about 1eV above the single-site result. Vertex corrections occurring in the four-site approxima-
tion act to dramatically increase the value of the optical conductivity near the gap edge, resulting
in a much agreement with data. The calculations reveal two distinct correlated insulating states:
the ‘magnetically correlated insulator’, in which nontrivial intersite correlations play an essential
role in stabilizing the insulating state, and the strongly correlated insulator, in which local physics
suffices. Comparison of the calculations to data place the cuprates in the magnetically correlated
Mott insulator regime.

Understanding “strongly correlated” electron physics
[1] is one of the grand challenges of condensed mat-
ter theory. The layered copper-oxide materials such as
La2−xSrxCuO4 are central to this endeavor because they
exhibit a range of unusual electronic properties includ-
ing both high transition temperature superconductivity
and a correlation-driven insulating phase. Indeed the
physics that causes the insulating behavior is believed
[2] also to give rise to other important correlated elec-
tron properties, in particular, superconductivity. A clear
understanding of the physics of insulating phase is there-
fore essential. A basic question in the field is whether
the local effects of strong correlations are sufficient to
describe the important properties [2–5] or whether in-
tersite correlations are essential to the description of the
observed properties [6–9]. In this paper we use a clus-
ter implementation [10] of dynamical mean field theory
[11] to address the issue of the physics of the insulat-
ing phase of the cuprates. A crucial role in our work is
played by the configuration interaction (CI) solver intro-
duced by Zgid, Gull and Chan [12, 13], which enables
the computation of converged real-frequency single par-
ticle and optical spectra for wide parameter ranges in-
cluding both strong and weak interactions. We find that
the “copper-oxygen model” which is generally believed
[14–16] to represent the basic electronic physics of the
cuprates has three distinct regimes of behavior: a metal,
a charge transfer insulator and a magnetically correlated
charge transfer insulator in which the insulating behav-
ior is due to intersite correlators and not to the standard
local Mott physics. Comparison of our results to data lo-
cates the cuprates in the magnetically mediated insulator
regime.

An appropriate ‘microscopic’ Hamiltonian for the ma-

terials is HCT = Hd +Hrest

Hd =
∑
kσ

εdd
†
kσdkσ + U

∑
i

nd,i↑nd,i↓ (1)

Hrest =
∑
kaσ

tapd(k)d†kσp
a
k,σ +H.c+

∑
kabσ

εabk p
†,a
kσ p

b
kσ. (2)

where k is a momentum in the two dimensional Brillouin
zone, d†kσ creates an electron of momentum k in a Cu

orbital and p†,akσ creates an electron in one of the two in-
plane oxygen pσ-orbitals. The charge transfer parameter
∆ is defined as the difference between the unrenormalized
on-site copper energy εd and the average on-site oxygen
energy εp = 1

2Trkabε
ab
k as ∆ = εp − εd.

The parameters ofHCT may be derived e.g. from Wan-
nier function fits to a band calculation; however the d
energy εd must be renormalized by a “double counting
correction” whose magnitude is not theoretically known
[17]. Previous work [9] has shown that the behavior of
the model does not depend on the details of the oxy-
gen dispersion εabk or on how the double counting is
implemented. The only important variable is the d-
occupancy Nd = 〈d†iσdiσ〉, which of course depends on
these variables in a complicated way. In this paper we
therefore adopt the most convenient model, εabk = εpδab,
tapd(k) = 2i sin ka and regard the double counting correc-
tion (i.e. the p-d energy difference ∆) as a parameter of
the theory.

We study HCT using the single and four-site versions of
the dynamical cluster approximation implementation of
dynamical mean field theory [10] as applied to the three-
band model e.g. by Macridin et al [18]. Previous work on
the Hubbard model revealed large qualitative differences
between the single-site and four-site cluster results [10,
19] with larger clusters providing important differences
of detail but not changing the qualitative picture [19].
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Less work has been done on cluster approximations to
HCT although the validity of the one-band model has
been considered [18], and an interesting studies of the
dependence of superconducting properties on the apical
oxygen distance has appeared [5].

The central computational task in dynamical mean
field theory [11] is the solution of a “quantum impu-
rity model”, a 0-space plus 1-time dimensional quan-
tum field theory or alternatively a small number Nc of
interacting orbitals coupled to a non-interacting bath.
The existing methods of solution are not fully satisfac-
tory. Continuous-time quantum Monte-Carlo [20–22] has
proven effective for the single-band Hubbard model at not
too strong correlations [23] and for multiorbital situations
in the single-site approximation [21, 24] but scales very
poorly with system size in situations involving orbital
degeneracy, becomes prohibitively expensive for strong
correlations and suffers a severe sign problem in situa-
tions with more than one orbital and low point symmetry
[22]. Also it is formulated in imaginary time and an ill-
controlled analytical continuation process is required to
obtain the real frequency information required for spec-
tral functions. The numerical renormalization group [25]
and the density matrix renormalization group [26] have
been effective in special situations (for example determin-
ing the precise low frequency spectral properties of the
single-orbital Hubbard model in the single-site approxi-
mation) but have proven difficult to apply generally. The
exact diagonalization method of Caffarel and Krauth [27]
and improved by Capone [28] approximates the quantum
field theory as a finite-size Hamiltonian which is diago-
nalized using e.g. Lanczos methods, and although in-
teresting studies have appeared [29–32] is limited by the
number of sites available.

In this paper we use our implementation of a new
method, the configuration interaction approach of Zgid
and Chan [13], to study the metal-insulator phase dia-
gram, electron spectral function and optical conductivity
of a fundamental model of the high transition tempera-
ture CuO2-based superconducting materials. We use a
zero temperature implementation. A related CI imple-
mentation has recently been used by Lin [33] to study
defect and other properties of SrTiO3. The CI method is
a variant of ED in which the full Hilbert space is not
treated; rather, the diagonalization is performed in a
variationally chosen subspace, allowing larger problems
to be attacked. The details of our implementation will
be given elsewhere [34]. Here we note that the ground
state is found by minimizing the Hamiltonian in a sub-
space consisting of number Nref of reference states plus
all possible states containing up to P particle-hole pair
excitations above the reference states. The key to the
method is that P is small. We find that in general choos-
ing up to two particle-hole pairs for each spin direction
(this is a subset of all possible P = 4 states) suffices, and
that for moderate interactions U . 12eV simply restrict-

ing to P = 2 suffices.

The reference states are obtained in practice as follows.
We define the natural orbital basis as the eigenstates
of the single particle density matrix of the ground state
ρ̂ = |ψ〉〈ψ|. We choose as active orbitals the 2Nc single
particle states of the natural orbital basis with ground-
state occupancy closest to 1/2. The other orbitals are
found to be a very good approximation to have occu-
pancy 1 or 0. As also noted by Lin [33], this limited
number of partially filled orbitals is crucial to the suc-
cess of the method. The reference states are then defined
as all many body states which may be formed from the
2Nc active orbitals with appropriate conserved quantities
(these are particle number Nact = Nc and, in the four-
site calculations, spin Sz = 0) with the other orbitals
remaining filled or empty. Since the reference states and
the ground state depend on each other, the whole proce-
dure is iterated until self-consistency is reached.

In this scheme the number Nref of reference states is
equal to the number of states in the largest Sz = 0 sec-
tor of the impurity subspace, i.e. Nref = (Nc

CNc/2)2

where nCm = n!/(m!(n−m)!), so that while the compu-
tational complexity grows exponentially in the size of the
impurity Hilbert space, it scales only as a power of the
number of bath orbitals and the reduced dimension of the
Hilbert space in CI means the prefactor is smaller. Stud-
ies of up to Nb = 20 are possible for a four-site cluster
without parallelization for distributed memory system;
larger systems should be accessible when the algorithm
is optimized.

Figure 1 shows the density of states (DOS) ρ ob-
tained from converged DMFT solutions for different num-
ber of bath states Nb. As is standard in ED calcu-
lations, a small broadening factor η = 0.10eV is in-
troduced and ρ is defined in terms the trace of the
branch cut discontinuity of the local Green function:
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FIG. 1. (color online) Density of states from (a) 4-site and
(b) single-site DMFT with various values of Nb. A small
broadening factor η = 0.10eV is used.
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FIG. 2. (color online) Metal-insulator transition phase dia-
gram in plane of interaction strength U and p-d energy split-
ting ∆ (panel (a)) and d-occupancy Nd (panel (b)) from
single-site (Nc = 1) and 4-site (Nc = 4) dynamical mean
field approximation. The error bars reflect uncertainties aris-
ing from restricting to P = 2 particle-hole pairs at large U;
where not shown they are smaller than the size of the points.
The region shaded with lines slanting up and to the left is
the conventional Mott insulator (CMI) region, where insu-
lating behavior is found even for Nc = 1; the region shaded
with lines slanting up and to the right indicate regions that
are metallic in the single-site approximation and the cross-
hatched region is the magnetically correlated Mott insulator
(MCMI), which is insulating for Nc = 4 but not Nc = 1. The
shaded area is the coexistence region of the metal-insulator
transition in the single-site approximation. The symbols ‘z’
and ‘F’ denote parameter values that yield gaps comparable
to the experimental values for Nc = 1 and 4 respectively.

ρ(ω) = Tr [Gloc(ω − iη)−Gloc(ω + iη)] /(2πi). Gloc is
the 12 × 12 matrix (4 momentum space tiles and three
orbitals per tile) defined in Eq. 5 of the supplementary
material. Consistent with previous work [35], our single-
site calculations (lower panel) show that Nb = 9 is suf-
ficient to describe the behavior at gap edge. For the
four-site case we verify that Nb = 8 produces qualita-
tively correct results, but leads to errors in the spectral
gap of ∼ 0.2eV, while for Nb = 12 the spectral gap is
quantitatively converged. In the rest of the paper we use
(Nc, Nb) = (1, 9) and (4, 12) unless otherwise mentioned.

In the left panel of Fig. 2 we present the metal insu-
lator phase diagram obtained by single-site and cluster
DMFT method in the plane of interaction strength and
charge transfer energy at total filling n = 5 (one hole per
Cu). To determine the nature (metallic vs insulating) of
the state we examine the low frequency behavior of the
self energy. For an insulator, the self energy has a pole
near the chemical potential, while for a metal the self
energy is smooth. This criterion is less sensitive to finite-
bath size errors than is a direct examination of the den-
sity of states. The single-site approximation contains the
physics of conventional Mott/charge transfer insulators,

while the cluster approximation additionally includes the
effects of intersite correlations. Comparison of the two
allows us to distinguish different types of insulators.

The single-site results are consistent with previous
work [35]. The transition is first order; the coexistence
region is shaded in Fig. 2. The size of this coexistence
region is robust against increasing Nb. The four-site ap-
proximation widens the insulating regime, shifting the
phase boundary in the U−∆ plane to the right by about
δ∆ = 3eV. The shift indicates that (as also found in
the Hubbard model [10, 19, 36, 37]) intersite magnetic
correlations present in the Nc = 4 but not the Nc = 1
calculation play a crucial role in stabilizing the insulating
state. We designate the region which is insulating only
if intersite correlations are included as the magnetically
correlated Mott insulator (MCMI) and the region which
is insulating even in the single-site approximation as the
conventional Mott insulator (CMI). As in the 4-site ap-
proximation to the Hubbard model [36, 37], the transition
in the four-site approximation to the p-d model is found
to be weakly first order, with a small coexistence region;
however the size of the coexistence region shrinks as the
number of bath states is increased (not shown) and the
actual size of the coexistence region for this model is not
established by the results we have.

Previous work [38] has shown that it is useful to con-
sider the physics as a function of the d-occupancy Nd.
In p-d models of the kind studied here, results expressed
in terms of Nd are insensitive to such details of the band
structure as the oxygen-oxygen hopping. The right panel
of Fig. 2 shows the metal-insulator phase diagram in the
plane of interaction strength and d-occupancy. Inclu-
sion of intersite correlations shifts the phase boundary
by about 0.25 in Nd, with the shift being independent of
U . The ability of the CI method to attain larger U allows
us to see that the phase boundary in the U − Nd plane
only becomes vertical for very large U ∼ 16eV, while
physically relevant values for the copper-oxide materials
are ∼ 8–10eV [1].

In Fig. 3 we present the excitation gap determined from
the calculated self energy and the quasiparticle equation
as discussed in Ref. [39]. In the single-site approximation,
at fixed U the gap magnitude in the insulating solution
decreases linearly as Nd increases. This smooth behavior
indicates that there is only one kind of insulating state
in the single-site approximation. We identify this as the
conventional Mott insulator (CMI) phase. As extensively
discussed [11], the gap in the CMI phase can be smoothly
decreased to zero but this transition is preempted by a
first order transition to a metallic phase. In the four-
site approximation, two regimes are evident: a small Nd
strongly correlated regime where the gap vs Nd curve is
very similar to the single-site approximation (albeit with
an enhanced gap) and a larger Nd regime where the slope
of the ∆ − Nd curve changes. We identify this regime
as the MCMI. The crossover between the two regimes
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FIG. 3. (color online) Spectral gap as a function of d-
occupancy for various values of U with (Nc, Nb) = (1, 9)
and (4, 12). For Nc = 1, two distinct solutions depending
on initial conditions are shown in the intermediate region.
The black horizontal line indicates the charge transfer gap
∆ρ = 2eV characteristic of the parent compounds of the high-
Tc cuprates. The size of the shaded region reflects the uncer-
tainties arising from the P = 2 approximation at large U .

occurs at the point at which the gap closes in the single-
site approximation.

The optically determined [40] charge transfer gap of
about 2eV is shown as a horizontal line. For U -values in
the generally accepted range U ∼ 8–10eV we see that an
Nd ∼ 1.14–1.20 is required to reproduce the gap in the
single-site approximation; in the 4-site approximation a
larger Nd ∼ 1.22–1.28 is needed to reproduce the gap.
The Nd values needed to reproduce the insulating gap for
U = 8eV are marked in Fig. 2 by the symbols ‘z’ (for the
single-site case) and ‘F’ (in the four-site case). The Nd
needed to fit the observed excitation gap in the 4-site ap-
proximation is in the coexistence region of the single-site
approximation. Both in the 1-site and 4-site cases the Nd
values required to account for the observed gap are sub-
stantially smaller than the density functional prediction
Nd ∼ 1.4 [38], suggesting that density functional theory
overestimates the Cu-O covalence. An analysis of nuclear
magnetic resonance data [41] suggests an Nd ∼ 1.22 con-
sistent with the Nc = 4 calculation.

Figure 4 presents the optical conductivity (a, b) and
DOS (c) obtained for U = 8eV with ∆ values chosen to
reproduce the observed ∼ 2eV gap. In the 4-site optical
conductivity calculation, vertex corrections are incorpo-
rated following the method presented in Ref. [42]. We
see that the single-site calculation predicts a very small
value for the optical conductivity at frequencies not too
far above the upper gap edge, while the four-site calcu-
lation yields a much larger conductivity for frequencies
near the gap edge, in a better agreement with data [40].
The physics is that the gap is indirect and vertex cor-
rections (not present in the Nc = 1 calculation) activate
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FIG. 4. (color online) (a) Optical conductivity from the
single- and 4-site DMFT with parameters fixed to yield gap
size ∆ρ ∼ 2eV at correlation strength U = 8.0eV while the 4-
site calculation leads to a rapid rise in the conductivity at the
gap edge, in agreement with experiment. (b) Vertex and bub-
ble contribution to the optical conductivity for 4-site DMFT.
(c) Density of states with the same parameters in (a).

gap edge transitions by allowing for a multi-particle tran-
sition in which an excitation of momentum Q ≈ (π, π) is
emitted. The vertex corrections are present for all val-
ues of the correlation strength but are most important
in the MCMI regime (see supplementary material). The
large enhancement of the gap edge conductivity relative
to experiment is an artifact of the Nc = 4 approxima-
tion, which concentrates the vertex corrections at the
boundaries between momentum space tiles. The inte-
grated spectral weight, which is more robust to details
of methodology is in good agreement with data (see sup-
plementary material).

In summary, this paper introduces an implementation
of the Zgid-Chan CI-solver [12] which allows us to obtain
converged real-frequency results for single-particle and
conductivity spectra of the charge-transfer model gener-
ally agreed to represent the physics of the high-Tc cuprate
superconductors, for a wide range of previously inaccessi-
ble parameters. Our results enable us to distinguish two
types of insulating phase, the conventional Mott insula-
tor and the magnetically correlated Mott insulator and
comparison of our calculations to experiment place the
materials in the magnetically correlated Mott insulator
(MCMI) region of the phase diagram, supporting previ-
ous suggestions [8, 9, 38] that intersite correlations play
an essential role in the physics of the high-Tc cuprates.
A subsequent paper will investigate the different dop-
ing dependences of the two phases. Our work also re-
solves a previously noted [9] discrepancy between theory
and optical conductivity data. Finally, we confirm previ-
ous indications [38] that single-site dynamical mean field
theory provides a quantitatively poor approximation to
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basic properties of the two dimensional charge-transfer
model and that density functional band theory overesti-
mates the p-d hybridization and should not be used as
a guide for placing materials on the metal-charge trans-
fer insulator phase boundary. Our work validates the CI
method as a robust and powerful approach for investi-
gating the physics of correlated electron materials. As
a direction for future work we note that the ability of
the CI method to treat a much larger number of bath
orbitals than is possible in conventional ED solvers in-
dicates that the method will be useful in treating the
non-diagonal hybridization functions arising in low sym-
metry situations, where severe sign problems limit the
applicability of quantum Monte Carlo methods [22] and
difficulties with bath-fitting prevent the application of
conventional ED methods. Spin-orbit coupled situations
and cluster DMFT descriptions of systems with several
partially occupied correlated orbitals may now be theo-
retically accessible.

This work was supported by the US Department of
Energy under Grants No. DOE FG02-04ER46169 and
DE-SC0006613.
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