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We study the indentation of a thin elastic film floating at the surface of a liquid. We focus on the
onset of radial wrinkles at a threshold indentation depth and the evolution of the wrinkle pattern as
indentation progresses far beyond this threshold. Comparison between experiments on thin polymer
films and theoretical calculations shows that the system very quickly reaches the Far from Threshold
(FT) regime, in which wrinkles lead to the relaxation of azimuthal compression. Furthermore, when
the indentation depth is sufficiently large that the wrinkles cover most of the film, we recognize
a novel mechanical response in which the work of indentation is transmitted almost solely to the
liquid, rather than to the floating film. We attribute this unique response to a nontrivial isometry
attained by the deformed film, and discuss the scaling laws and the relevance of similar isometries
to other systems in which a confined sheet is subjected to weak tensile loads.

PACS numbers: 46.32.+x,46.70.De,62.20.mq

When an elastic sheet is subjected to external forces, it
is often implicitly assumed that the work done is stored
in the deformed sheet. Under purely tensile loads, the
work is stored primarily by stretching energy. When the
forces are purely compressive, as in uniaxial buckling,
the strain is typically negligible, and the work is instead
stored as bending energy [1]. Under more complicated
compressive forces, such as those required to confine a
sheet in a box [2], the work is stored in localized (stress-
focusing) zones that involve bending and stretching. In
this Letter, we report a new response exhibited by the
indentation of an elastic film floating at a liquid–gas in-
terface. We show that for sufficiently large indentations,
only a negligible fraction of the work done by the inden-
ter is stored as elastic energy — the majority is stored in
the gravitational and surface energies of the liquid.

Interest in the indentation of elastic objects includes a
range of metrological applications. Just as one tests an
object’s stiffness by poking it, controlled indentation is
used in the measurement of internal pressure within poly-
meric [3] and biological [4–8] capsules and to determine
the modulus of thin membranes [9]. These applications
motivated theoretical studies of indented spherical shells,
which suggested that ‘mirror-buckling’ [10] (fig. 1a) oc-
curs in the presence of an internal pressure [8]. Mirror
buckling is the simplest possible isometric (i.e. strainless)
deformation of an infinitely thin shell so the work done
in indenting the shell is nearly independent of the elastic
moduli; instead it goes into compressing the gas within
the shell [8].

In contrast to shells, the indentation of elastic sheets
is highly sensitive to tension. If a sheet is not under
tension, indentation typically leads to the formation of a
developable cone (“d-cone”) [11–13], which is isometric
everywhere except within a small region around the in-
denter (fig. 1b). The formation of this nearly isometric
shape involves large vertical deflections of the initially
planar sheet and is therefore unattainable when vertical

displacements are penalized. This is the case for thin
elastic films floating on a liquid as formed by vulcaniza-
tion of a liquid polymer drop, in which case an unknown
pre-stress is hypothesized [14], or by deposition, in which
case the liquid surface tension acts at the film’s edge [15].
Experiments on the latter system are better controlled
than the former and show that indentation gives rise to
a shape full of radial wrinkles that transform into sharp
folds beyond a threshold indentation [15].

The striking difference between the observed wrin-
kled/folded shape and the nearly isometric d-cone, was
interpreted in [15] as an indication of considerable strain
in the film induced by the combination of indentation and
boundary tension. Here we focus on the wrinkle pattern,
and show that wrinkling reveals a new isometry of the
film with the strain at the pre-indentation level. As a
result, the indentation force exhibits a nontrivial depen-
dence on the surface tension and density of the liquid,
but is independent of the film’s elastic moduli. This type
of isometry is novel in the elasticity of thin bodies [2], be-
ing achieved only in the doubly asymptotic limit of weak
applied tension and small bending stiffness; we therefore
refer to it as an asymptotic isometry.

Our experimental setup consists of polystyrene films
(Young’s modulus E = 3.4 GPa, Poisson ratio ν = 0.33
and radius Rfilm = 1.14 cm) floating at the surface of
deionized water [16]. The interfacial tension, γlv, was
varied in the range 36 mN/m ≤ γlv ≤ 72 mN/m us-
ing surfactant. The thickness of the film, t, satisfied
85 nm ≤ t ≤ 246 nm [35]. Stainless steel needles (tip
radii rtip ≈ 25 µm, 135 µm) were used to impose a ver-
tical displacement, δ, at the center of the film. Indenta-
tions up to δ ≈ 0.75 mm were applied and measured to
within 10 µm. The deformed film was viewed from below
using a microscope.

Our theoretical study is based on the Föppl-von Kar-
man (FvK) equations for an elastic film, with stretching
modulus Y = Et and bending modulus B = Et3/12(1−
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FIG. 1: (a) Schematic illustration of “mirror buckling”, the
isometric deformation of an infinitely thin spherical shell [10]
that characterizes the response to indentation of a very thin
axisymmetric shell with or without an internal pressure [8].
(b) Indenting a sheet with free boundaries leads to the for-
mation of a “d-cone”, which is isometric everywhere except
close to the indenter. (c) Schematic illustration showing the
evolution of a floating film subject to increasing dimension-
less indentation, δ̃: pre-indentation state (δ̃ = 0, upper, flat);

at small indentation (δ̃ ≪ δ̃c, second from top) the tension
is approximately homogeneous and isotropic; at intermediate
indentation (δ̃c < δ̃ ≪ R2/3, second from bottom), wrinkles
develop in an annular region (light blue) in which the hoop

stress is compressive; at large indentation (δ̃ ≫ R2/3, bot-
tom), wrinkles (light blue) cover the entire film except in an
inner core of radius LI (black).

85 nm ≤ t ≤ 246 nm [30]. Stainless steel needles (tip
radius rtip ≈ 25 µm and rtip ≈ 135 µm) were used to
impose a vertical displacement, δ, at the center of the
film, r = 0. Indentation depths up to δ ≈ 0.75 mm were
applied and measured to within 10 µm. The deformed
film is viewed from below using a microscope.

Our theoretical study is based on the Föppl-von Kar-
man (FvK) equations for an elastic film, with stretching
modulus Y = Et and bending modulus B = Et3/12(1 −
ν2), that floats on a liquid of density ρl, is subject to an
interfacial tension γlv at its edge and to a localized in-
dentation force F that causes a vertical displacement δ at
its center. We further assume that the film’s radius Rfilm

is much larger than the capillary length ℓc =
√
γlv/Kf ,

where Kf = ρℓg.

Before discussing the FvK equations it is useful to de-
scribe the characteristic behavior of the film as the in-
dentation depth δ is increased (Fig. 1c), and thereby
identify the relevant dimensionless groups in the prob-

lem. For very small δ, the response is similar to that
of a fluid membrane: the stress remains close to its pre-
indentation state, σrr ≈ σθθ ≈ γlv, and the vertical defor-
mation ζ(r) decays over a horizontal distance ℓc (fig. 1c).
As δ is increased, the indentation-induced strain, which
scales as (δ/ℓc)

2, leads to a noticeable inhomogeneity
in the stress (fig. 2a): the radial stress σrr(r) decreases
monotonically towards γlv for r ≫ ℓc. In contrast, the
hoop stress σθθ(r) decreases more sharply, overshooting
γlv before approaching γlv from below. Intuitively, the
rapid decrease of the hoop stress occurs because indenta-
tion causes material circles to be pulled inwards and be-
come relatively compressed. If the indenter’s tip is suffi-
ciently small, this purely geometric effect is governed only
by the “confinement ratio” (δ/ℓc)

2/(γlv/Y ) between the
indentation-induced strain, and the purely tensile strain
caused by surface tension. We therefore introduce the
dimensionless indentation depth

δ̃ =
δ

ℓc
(Y/γlv)

1/2
, (1)

which determines the rescaled stress profiles fully. As
δ̃ increases above a threshold δ̃c, analysis of the FvK
equations shows that the hoop stress becomes compres-
sive (σθθ < 0) within a narrow annulus (blue solid curve,
fig. 2a). As these films are very thin, a compressive hoop
stress leads to wrinkling (fig. 2b). For an infinite film, nu-

merical analysis of the FvK equations yields δ̃c ≈ 11.75,
in very good agreement with our experimental measure-
ments for a range of film thicknesses, surface tensions and
indenter sizes, which collapse onto a curve corresponding
to δ̃c ≈ 10 (fig. 3a).

Two crucial phenomena occur as the indentation am-
plitude is increased above its critical value, δ̃c. First, the
wrinkled zone expands beyond the original narrow an-
nulus. A detailed calculation [15] shows that the outer

radius of the wrinkled zone LO/ℓc ∼ δ̃3/2 so that wrin-

kles reach the film edge when δ̃ ∼ (Rfilm/ℓc)
2/3. Second,

the thinness of the film means that the compressive hoop
stress is completely relaxed by wrinkling: σθθ(r) ≈ 0,
a qualitative change from the pre-buckled profile (red
solid curve in fig. 2a). We therefore use the Far-from-
Threshold (FT) approach, valid in the singular limit of
zero bending stiffness [16, 17]. These two phenomena are
characterized by the dimensionless radius, R, and “bend-
ability”, ϵ−1, [18] of the film, where:

R = Rfilm/ℓc, ϵ−1 = γlvℓ
2
c/B. (2)

For our experiments, ϵ ! 10−5.
In the FT approach we write the energy of the system

as U = Udom + Usub with Usub the subdominant energy
governed by the bending cost of wrinkling, which van-
ishes as ϵ → 0, and Udom the dominant energy, which
remains finite as ϵ → 0. Minimization of Usub deter-
mines the number of wrinkles. In the current study we
employ tension field theory [16] (corresponding to min-
imizing Udom) to determine the mean deflection profile
ζ(r) and the extent of the wrinkled zone.

FIG. 1: (a) Schematic illustration of the indentation of a very
thin axisymmetric shell with or without an internal pressure,
which tends to an isometric “mirror buckling” deformation
[8, 10]. (b) Indenting a sheet with free boundaries leads to a
“d-cone”, which is isometric everywhere except close to the
indenter [12, 13]. (c) Schematic illustration showing the evolu-

tion of a floating film subject to increasing indentation, δ̃: pre-
indentation state (upper, flat); at small indentation (δ̃ � δ̃c,
second from top) the tension is approximately uniform; at

intermediate indentation (δ̃c < δ̃ � R2/3, second from bot-
tom), the hoop stress is compressive in an annular wrinkled

region (light blue); at large indentation (δ̃ � R2/3, bottom),
wrinkles cover the entire film except for r < LI (black).

ν2), floating on a liquid of density ρl, subject to tension
γlv at its edge and a localized indentation force F caus-
ing a vertical displacement δ at r = 0. We assume that
the film’s radius Rfilm is much larger than the capillary
length `c = (γlv/Kf )1/2, where Kf = ρ`g.

It is useful to identify the dimensionless groups in the
problem by describing the characteristic behavior of the
film as δ increases (fig. 1c). For very small δ, the response
is similar to that of a fluid membrane: the stress remains
close to its pre-indentation state, σrr ≈ σθθ ≈ γlv, and
the vertical deformation ζ(r) decays over a horizontal
distance `c (fig. 1c). As δ is increased, the indentation-
induced strain, ∼ (δ/`c)

2, leads to a noticeable inhomo-
geneity in the stress (fig. 2a): the radial stress σrr(r)
decreases monotonically towards γlv for r � `c, while
the hoop stress σθθ(r) decreases more sharply, overshoot-
ing γlv before approaching γlv from below. Intuitively,
this occurs because indentation causes material circles to
be pulled inwards and become relatively compressed. If
the indenter’s tip is sufficiently small, this purely geo-
metric effect is governed only by the “confinement ratio”
(δ/`c)

2/(γlv/Y ) between the indentation-induced strain,
and the purely tensile strain caused by surface tension.
We therefore introduce the dimensionless indentation

depth

δ̃ =
δ

`c
(Y/γlv)

1/2
, (1)

which determines the stress profiles fully. As δ̃ increases
above a threshold δ̃c, analysis of the FvK equations shows
that the hoop stress becomes compressive (σθθ < 0)
within a narrow annulus (blue solid curve, fig. 2a). As
these films are very thin, a compressive hoop stress causes
wrinkling (fig. 2b). For an infinite film, numerical analy-

sis of the FvK equations yields δ̃c ≈ 11.75, in good agree-
ment with our experiments for a range of film thicknesses,
tensions and indenter sizes (fig. 3a).

Two crucial phenomena occur as the indentation am-
plitude is increased above δ̃c. First, the wrinkled zone
expands: a detailed calculation [17] shows that the outer

radius of the wrinkled zone LO/`c ∼ δ̃3/2 so that wrin-

kles reach the film edge when δ̃ ∼ (Rfilm/`c)
2/3. Second,

the thinness of the film means that the compressive hoop
stress is completely relaxed by wrinkling: σθθ(r) ≈ 0,
a qualitative change from the pre-buckled profile (red
solid curve in fig. 2a). We therefore use the Far-from-
Threshold (FT) approach, valid in the singular limit of
zero bending stiffness [18, 19]. These two phenomena are
characterized by the dimensionless radius, R, and “bend-
ability”, ε−1, [20] of the film, where:

R = Rfilm/`c, ε−1 = γlv`
2
c/B. (2)

For our experiments, ε . 10−5.
In the FT approach the energy is written U = Udom +

Usub with Usub the subdominant energy governed by the
bending cost of wrinkling, which vanishes as ε → 0, and
Udom the dominant energy, which remains finite as ε→ 0.
Minimization of Usub determines the number of wrinkles.
In the current study we employ tension field theory [18]
(minimizing Udom) to determine the mean deflection pro-
file ζ(r) and the extent of the wrinkles.

We write the axisymmetric FvK equations using an
Airy potential ψ (so that σrr = ψ/r and σθθ = ψ′). The
vertical force balance reads

B∇4ζ − 1

r

d

dr

(
ψ

dζ

dr

)
= −Kfζ −

F

2πr
δ(r), (3)

where F is the point-like indentation force, found as part
of the solution for a given indentation. The compatibility
of strains in the unwrinkled zone (where both σrr and σθθ
are tensile) gives [1]

r
d

dr

[
1

r

d

dr
(rψ)

]
= −1

2
Y

(
dζ

dr

)2

. (4)

We note that equations (3)-(4) are invariant under ζ →
−ζ, F → −F ; our results therefore apply equally to the
cases of pushing down on (considered here) and pulling
up on [15] a floating membrane. Invoking tension field
theory, we neglect the bending term in Eq. (3), and re-
place Eq. (4) by ψ = constant in the wrinkled zone (since
σθθ = 0) [35].
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FIG. 2: (Color online) The profiles of the hoop (solid curves)
and radial (dashed curves) stresses within an indented, ax-

isymmetric film (with R ≫ 1) at indentation depths δ̃ = 7.5

(red curves) and δ̃ = 15 (blue curves), calculated for the ax-
isymmetric (unwrinkled) problem. Notice that σθθ is negative

for intermediate values of r when δ̃ = 15 so that sufficiently
thin films will wrinkle. This expectation is confirmed by wrin-
kled membranes viewed from below: (b) Just beyond the on-
set of instability (δ = 0.48 mm) wrinkles are confined to an
annulus LI ≤ r ≤ LO . (c) Ultimately wrinkles reach the edge
of the film (here δ = 0.56 mm) so that the wrinkled annulus
is LI ≤ r ≤ Rfilm. Here t = 85 nm and Rfilm = 11.4 mm.

We write the axisymmetric FvK equations using an
Airy potential ψ (so that σrr = ψ/r and σθθ = ψ′). The
first FvK equation, representing vertical force balance,
reads

B∇4ζ − 1

r

d

dr

(
ψ

dζ

dr

)
= −Kfζ − F

2πr
δ(r), (3)

where F is the indentation force, assumed for simplicity
to be point-like and found as part of the solution for a
given indentation. The second FvK equation ensures the
compatibility of strains in the unwrinkled zone (where
both σrr and σθθ are tensile) and may be written [1]

r
d

dr

[
1

r

d

dr
(rψ)

]
= −1

2
Y

(
dζ

dr

)2

. (4)

We note that the equations (3)-(4) are symmetric un-
der the transformation ζ → −ζ, F → −F ; our results
therefore apply equally to the case of pushing down on a
floating membrane (considered here) and to the case of
pulling up on the membrane [14]. Invoking tension field
theory, we neglect the bending term in Eq. (3), and re-
place Eq. (4) by ψ = constant in the wrinkled zone (so
that σθθ = 0) [30].

We turn now to the parameter regime δ̃ ≫ R2/3, where
the wrinkles cover the whole film except in a small core
0 < r < LI (see fig. 2c). Noting that σrr(Rfilm) = γlv,
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FIG. 3: (Color online) (a) Experimentally measured val-
ues of the indentation depth at which wrinkling first oc-
curs, δc, as a function of the characteristic vertical scale
ℓc(γlv/Y )1/2. Experiments in which the film thickness is var-
ied (59 nm ≤ t ≤ 246 nm) with γlv = 72 mN/m are shown
for indenter radii rtip = 135 µm (!) and rtip = 25 µm (•).
Experiments in which the surface tension coefficient is varied
(36 mN/m ≤ γlv ≤ 72 mN/m) with t = 121 nm are shown by

". The theoretical prediction for R ≫ 1, δ̃c ≈ 11.75, is shown
by the dashed line. The good agreement with experiment
justifies our neglect of the indenter size and any (hypoth-
esized) manufacture-dependent pre-stress, which were both
attributed a crucial role previously [13]. (b) The evolution
of the inner position of the wrinkles, r = LI , as the inden-
tation depth, δ̃, increases in the regime where wrinkles reach
the edge of the film. Experiments with fixed γlv = 72 mN/m
and varying thicknesses: t = 85 nm (!), t = 121 nm (⃝),
t = 158 nm (△), t = 207 nm (×), t = 246 nm (✩). Ex-
periments with fixed t = 121 nm and varying liquid sur-
face tension: γlv = 58 mN/m (#), γlv = 50 mN/m ($) and
γlv = 42 mN/m (%). The theoretical prediction of the FT
theory (solid curve) and the asymptotic result (7) (dashed
line) are also shown. The wrinkle number scales similarly to
that found in other studies [19] (data not shown).

and that σθθ → 0 in the wrinkled zone, we find that
σrr(r) = γlvRfilm/r for LI < r < Rfilm. Substituting this
stress field in Eq. (3) we find that the film profile ζ(r) in
the wrinkled zone is given by an Airy function [20]:

ζ(r) = Aout · Ai(r/ℓcurv), ℓcurv = R1/3ℓc, (5)

Here ℓcurv replaces ℓc as the horizontal distance over
which the deflection of the membrane decays — wrin-
kling leads to a decay length that increases with film size

(∼ R
1/3
film).

The prefactor Aout and the inner position of the wrin-
kle pattern, LI , are found by patching the wrinkled zone
to the unwrinkled core (r < LI). In the limit δ̃ ≫ R2/3

analytical progress can be made [30] using standard tech-
niques [21]. We find that nearly the entire decay of the

FIG. 2: (Color online) The profiles of the hoop (solid curves)
and radial (dashed curves) stresses within an indented, un-

wrinkled film (with R � 1) at indentation depths δ̃ = 7.5

(red curves) and δ̃ = 15 (blue curves). Notice that σθθ is

negative for intermediate values of r when δ̃ = 15 so that
sufficiently thin films will, in fact, wrinkle. (b) Just beyond
the onset of instability (δ = 0.48 mm) wrinkles are confined
to an annulus LI ≤ r ≤ LO. (c) Ultimately wrinkles reach
the edge of the film (here δ = 0.56 mm) and wrinkles occupy
LI ≤ r ≤ Rfilm. Here t = 85 nm.

We turn now to large indentations δ̃ � R2/3, where the
wrinkles cover the whole film except in 0 < r < LI (see
fig. 2c). Noting that σrr(Rfilm) = γlv, and that σθθ → 0
in the wrinkled zone, we find that σrr(r) = γlvRfilm/r for
LI < r < Rfilm; Eq. (3) then reduces to Airy’s equation
[22]:

ζ(r) = Aout ·Ai(r/`curv), `curv = R1/3`c. (5)

Here `curv, which increases with film size ∼ R
1/3
film, re-

places `c as the decay length of membrane deflections.
The prefactor Aout and the inner radius, LI , are found

by patching the wrinkled zone to the unwrinkled core
(r < LI). In the limit δ̃ � R2/3 we find, using standard
techniques [23–25, 35], that Aout ≈ δ/Ai(0) and the ra-
dial displacement at the edge of the film approaches a
limiting value:

ur(Rfilm) ≈ −0.243 δ2/`curv ; (6)

a result whose importance will become apparent shortly.
Our asymptotic calculations also reveal that

LI
`curv

≈ 6.20
(
δ̃/R2/3

)−2

⇒ LI ∼
R

5/3
filmγ

5/3
lv

Y K
2/3
f

δ−2 . (7)

At the scaling level, Eq. (7) can be understood by not-
ing that in the tensile core the indentation-induced ra-
dial stress ∼ Y (δ/`curv)2, whereas in the wrinkled zone
σrr = γlvRfilm/r. Continuity of the radial stress at
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FIG. 3: (Color online) (a) Experimentally measured val-
ues of the indentation depth at which wrinkling first oc-
curs, δc, as a function of the characteristic vertical scale
ℓc(γlv/Y )1/2. Experiments in which the film thickness is var-
ied (59 nm ≤ t ≤ 246 nm) with γlv = 72 mN/m are shown
for indenter radii rtip = 135 µm (!) and rtip = 25 µm (•).
Experiments in which the surface tension coefficient is varied
(36 mN/m ≤ γlv ≤ 72 mN/m) with t = 121 nm are shown by

". The theoretical prediction for R ≫ 1, δ̃c ≈ 11.75, is shown
by the dashed line. The good agreement with experiment
justifies our neglect of the indenter size and any (hypoth-
esized) manufacture-dependent pre-stress, which were both
attributed a crucial role previously [14]. (b) The evolution
of the inner position of the wrinkles, r = LI , as the inden-
tation depth, δ̃, increases in the regime where wrinkles reach
the edge of the film. Experiments with fixed γlv = 72 mN/m
and varying thicknesses: t = 85 nm (!), t = 121 nm (⃝),
t = 158 nm (△), t = 207 nm (×), t = 246 nm (✩). Ex-
periments with fixed t = 121 nm and varying liquid sur-
face tension: γlv = 58 mN/m (#), γlv = 50 mN/m ($) and
γlv = 42 mN/m (%). The theoretical prediction of the FT
theory (solid curve) and the asymptotic result (7) (dashed
line) are also shown. The wrinkle number scales similarly to
that found in other studies [20] (data not shown).

tion force and surface tension acting at the edge of the
film, respectively. Ugpe, Ustretch are the gravitational en-
ergy of the displaced liquid and the elastic energy of
the film, respectively. The work done by the indenta-
tion force Windent =

∫
F dδ ∼ γlvR2/3δ2. One might

assume that the indentation work would be transmitted
to the elastic energy Ustretch that is stored in the tensile
components of the compression-free stress field. How-
ever, integrating the strain energy density σ2

ij/Y we ob-

tain: Ustretch/Windent ∼ (δ̃/R2/3)−2 ≪ 1. Indeed, using
Eqs. (5,6) to evaluate the work Wsurf ∼ Rfilmγlvur(Rfilm)
of the surface tension, and the energetic cost Ugpe ∼
Kf

∫ Rfilm

0
ζ2r dr of the vertically-displaced liquid, we find

the asymptotic relation:

for ϵ−1 ≫ 1, δ̃ ≫ R2/3 : Windent → −Wsurf + Ugpe (9)

This energetic structure describes a novel kind of me-
chanical response of an elastic film, whereby the work
of the indentation force is transmitted predominantly to
the subphase (increasing gravitational energy and un-
covering surface area of the liquid), while an asymp-
totically negligible fraction is stored as elastic energy
by the film itself. At a fundamental level, this simple
energetic structure reflects a nontrivial geometric fea-
ture: the wrinkled film becomes isometric to its pre-
indentation state in the doubly asymptotic limit of small
bending modulus (ϵ ≪ 1) and small exerted tensile strain

(since δ̃ ≫ R2/3 ⇒ (γlv/Y ) ≪ ur(Rfilm)/Rfilm by eqn
(6)). Recalling that the hoop strain is eliminated in the
limit ϵ → 0 by the formation of wrinkles, we note that
the asymptotic isometry follows from Eqs. (5,6), which
yield the elimination of radial stretching in the limit
δ̃R−2/3 → ∞ (the apparent stretching due to vertical dis-

placement, ∼
√
δ2 + ℓ2curv−ℓcurv, is completely cancelled

by the lateral displacement ur(Rfilm) of the edge). Thus,
the formation of wrinkles at negligible energetic cost en-
ables the metric of the film to remain almost identical to
its pre-indentation state, while the radial profile under-
goes a large deflection, Eq. (5), that is dictated by the
external forces of indentation, gravity, and surface ten-
sion. In other words, the tensed film lies in a “no-man’s-
land” – too stiff to be stretched significantly (since the
applied tensile strain γlv/Y is small), and yet perfectly
deformable (since the bending modulus B is also small).

In conclusion, we have shown that the indented state
of a floating film starts with a purely tensile response
but evolves, with the aid of wrinkles throughout the
film, into a state that is asymptotically isometric to the
pre-indented film. This state underlies a novel mechan-
ical response, in which the indentation force does work
mainly on the liquid with only a negligible fraction trans-
mitted to the elastic film. This response also underlies
the stability of the poked film to two common failure
modes of floating objects: the film would sink if the
height of the edge meniscus exceeds ℓc [23]; we found
that ζ(Rfilm) ∝ δAi(R2/3) ≪ ℓc (since R ≫ 1). Simi-
larly, pulling-induced delamination will occur if the ad-
hesive energy, ∆γR2

film, is smaller than the alternative
deformation energy [24]. Here, the alternative deforma-
tion energy, Udom, is barely affected by the elastic mod-
ulii of the sheet, so delamination is expected only for

δ >
√

∆γ/γlvR
2/3
filmℓ

1/3
c ), which is beyond the reach of ex-

isting experiments [15] and the validity of our small slope
theory.

Beyond the indentation-induced wrinkle pattern, the
concept of asymptotic isometry should be relevant to
other systems, where a thin elastic object is forced into
a curved, nondevelopable shape, in the presence of weak
tensile loads at its boundary. Representative examples
include the wetting of a thin sheet by a liquid meniscus
[25, 26] or its adhesion to a spherical bead [27], and the

FIG. 3: (Color online) (a) Experimentally measured threshold

indentation for wrinkling, δc, as a function of `c(γlv/Y )1/2.
Experiments with varying film thickness (59 nm ≤ t ≤
246 nm), γlv = 72 mN/m are shown for indenter radii rtip =
135 µm (N) and rtip = 25 µm (•). Experiments with vary-
ing surface tension coefficient (36 mN/m ≤ γlv ≤ 72 mN/m)
and t = 121 nm (�). The theoretical prediction for R � 1,

δ̃c ≈ 11.75, is also shown (dashed line). Good agreement
with experiment justifies our neglect of indenter size and any
(hypothesized) manufacture-dependent pre-stress, which were
both attributed crucial roles previously [14]. (b) The inner
wrinkle radius, r = LI , decreases with increasing indenta-
tion, δ̃, when wrinkles reach the film’s edge. Experiments
with γlv = 72 mN/m and: t = 85 nm (2), t = 121 nm
(©), t = 158 nm (4), t = 207 nm (×), t = 246 nm (I).
Experiments with t = 121 nm and: γlv = 58 mN/m (�),
γlv = 50 mN/m (I) and γlv = 42 mN/m (J). The predic-
tion of the FT theory (solid curve) and the asymptotic result
(7) (dashed line) are also shown. The wrinkle number scales
similarly to that found in other studies [21] (data not shown).

r = LI yields the scaling in (7). Figure 3b shows that
this result agrees well with numerical solutions of the
full problem and with experiments. Strikingly, Eq. (7)
shows that the size of the tensile core is affected by all
physical parameters in the problem (except the bending
modulus).

Our calculation also yields the indentation force F ≈
4.581γlvR2/3δ, consistent with previous measurements

[15, 35]. Two features of the scaling F ∼ γ2/3
lv K

1/3
f R2/3δ,

are surprising. Firstly, F ∝ δ, even though the FvK
equations are highly non-linear. Secondly, the force is in-
dependent of the elastic moduli of the film. Understand-
ing this mechanical response requires reconsideration of
the dominant energy of the wrinkle pattern:

Udom = −(Windent +Wsurf) + (Ugpe + Ustretch). (8)

Here Windent,Wsurf are the work done by the inden-
tation force and surface tension acting at the edge of
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the film, respectively. Ugpe, Ustretch are the gravita-
tional energy of the displaced liquid and the elastic
energy of the film, respectively. The work done by
the indentation force Windent =

∫
F dδ ∼ γlvR2/3δ2.

One might assume that Windent would be transmitted
to the elastic energy Ustretch due to the tensile com-
ponents of the compression-free stress field. However,
integrating the strain energy density σ2

ij/Y we obtain:

Ustretch/Windent ∼ (δ̃/R2/3)−2 � 1. Indeed, using
Eqs. (5,6) to evaluate the work Wsurf ∼ Rfilmγlvur(Rfilm)
of the surface tension, and the energetic cost Ugpe ∼
Kf

∫ Rfilm

0
ζ2r dr of the vertically-displaced liquid, we find

the asymptotic relation:

for ε−1 � 1, δ̃ � R2/3 : Windent → −Wsurf + Ugpe (9)

This energetic structure describes a novel mechani-
cal response of an elastic film, whereby the work of the
indenter is transmitted predominantly to the subphase
(increasing gravitational energy and uncovering surface
area of the liquid), while an asymptotically negligible
fraction is stored as elastic energy in the film. This
simple energetic structure reflects a nontrivial geomet-
ric feature: the wrinkled film becomes isometric to its
pre-indentation state in the doubly asymptotic limit of
small bending modulus (ε� 1) and small exerted tensile

strain (since δ̃ � R2/3 ⇒ (γlv/Y ) � ur(Rfilm)/Rfilm

by eqn (6)). Recalling that the hoop strain is elim-
inated in the limit ε → 0 by the formation of wrin-
kles, we note that the asymptotic isometry follows from
Eqs. (5,6), which yield the elimination of radial stretch-

ing in the limit δ̃R−2/3 → ∞ (the apparent stretching,

∼
√
δ2 + `2curv− `curv, is completely cancelled by the lat-

eral displacement ur(Rfilm) of the edge). Thus, the for-
mation of wrinkles at negligible energetic cost enables the
metric of the film to remain almost identical to its pre-
indentation state, even though the film suffers a large
deflection, Eq. (5), that is determined by indentation,
gravity, and surface tension. In other words, the film lies
in a “no-man’s-land” – too stiff to be stretched signif-
icantly (the applied tensile strain γlv/Y is small), and
yet perfectly deformable (since the bending modulus B
is also small).

In conclusion, we have shown that an indented float-

ing film starts with a purely tensile response but evolves,
with the aid of wrinkles, into a state that is asymptot-
ically isometric to its initial state. This demonstrates a
novel mechanical response, in which the indenter does
work mainly on the liquid with only a negligible frac-
tion transmitted to the elastic film. This response also
underlies the stability of the poked film to two com-
mon failure modes of floating objects: the film would
sink if the displacement at the edge exceeds `c [26],
but ζ(Rfilm) ∝ δAi(R2/3) � `c (since R � 1). Simi-
larly, pulling-induced delamination will occur if the ad-
hesive energy, ∆γR2

film, is smaller than the alternative
deformation energy [27]. Here, the alternative deforma-
tion energy, Udom, is barely affected by the elastic mod-
ulii of the sheet, so delamination is expected only for

δ >
√

∆γ/γlvR
2/3
film`

1/3
c , which is beyond the reach of ex-

isting experiments [15] and the validity of our small slope
theory.

The concept of asymptotic isometry should be relevant
to other systems, where a thin elastic object is forced into
a curved, nondevelopable shape, in the presence of weak
tensile loads. Representative examples include the wet-
ting of a film by a liquid meniscus [28, 29] or its adhesion
to a sphere [30, 31], and the twisting of a stretched ribbon
[32, 33]. Such systems may also have regimes in which the
sheet is highly deformed yet nearly isometric to their un-
deformed state; consequently, the work done by external
forces is not stored in the film. Finally, it is important to
realize that asymptotically isometric states may not nec-
essarily be wrinkled: the wrinkle-fold transition [15, 34]
and other secondary instabilities may also exhibit a sim-
ilar phenomenology. We hope that our work will provide
a suitable framework for studying these phenomena.
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[4] M. Hernando-Pérez et al., Small 8, 2366 (2012).
[5] M. Arnoldi et al., Phys. Rev. E 62, 1034 (2000).
[6] P. Milani, S. A. Braybrook, and A. Boudoaud, J. Exp.

Bot. 64, 4651 (2013).
[7] J. Arfsten, S. Leupold, C. Bradtmöller, I. Kampen, and
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