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We present a theory for the number fluctuations of a quasi-two-dimensional (quasi-2D) dipolar Bose-Einstein
condensate (BEC) measured with finite resolution cells. We show that when the dipoles are tilted to have a
component parallel to the plane of the trap, the number fluctuations become anisotropic, i.e. depend on the in-
plane orientation of the measurement cell. We develop analytic results for the quantum and thermal fluctuations
applicable to the cell sizes accessible in experiments. We show that as cell size is increased the thermody-
namic fluctuation result is approached much more slowly than in condensates with short range interactions, so
experiments would not require high numerical aperture imaging to observe the predicted effect.
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Many important aspects of a quantum system are revealed
by studying its fluctuations. For instance, in quantum optics
intensity fluctuations distinguish a laser from chaotic light [1],
and reveal non-classical effects such as photon anti-bunching
in resonance florescence [2]. With the rapid progress made
in the experimental study of quantum gases, the measurement
of fluctuations has become of increasing interest (e.g. see [3–
14]). Particularly for the insight it provides into manybody
physics, including non-equilibrium regimes where it is a crit-
ical tool for studying quenches [10, 15].

Here we study the fluctuations of a dipolar BEC, a system
that promises a diverse range of new physics (e.g. [16, 17])
and has seen remarkable experimental progress with the pro-
duction of chromium [18, 19], dysprosium [20] and erbium
[21] condensates. The key new feature of these systems is that
the atoms interact via a dipole-dipole interaction (DDI) that is
both long ranged and anisotropic. The anisotropy manifests it-
self in the condensate density distribution (magnetostriction)
[22, 23] and the excitation spectrum [24], and thus in the sys-
tem coherence functions [25], superfluid properties [26], and
critical temperature [27]. Additionally, the DDI is partially
attractive and produces roton-like excitations in confined ge-
ometries [28–30] and enhances density fluctuations [31–34].

The atom number fluctuation measurements are performed
in finite-sized cells, with minimum cell dimension being lim-
ited by the imaging system resolution (typically much larger
than the BEC healing length). The crucial role that the cell
plays in the measurement has been the subject of recent at-
tention [12, 13, 35]. Tailoring the size and shape of the cell
(e.g. by amalgamating the signal collected on detector pixels
[13]) can be used to identify localised roton modes [33] and
at sufficiently low temperatures (and for cells smaller than the
thermal wavelength) the measurements will be dominated by
quantum fluctuations of collective modes [13], predicted to
exhibit non-extensive scaling with cell size [31, 36].

Focusing on the quasi-2D case of a dipolar BEC tightly
confined in one direction we consider the measurement of
number fluctuations in cells (c.f. fluctuation measurements
of a non-dipolar BEC in [11, 15]). We demonstrate that

the fluctuations are anisotropic, as schematically illustrated
in Fig. 1(a): Two cells of identical geometry, but orthogonal
orientations, measure identical mean atom numbers, however
the number variances in these two measurements are strik-
ingly different [Fig. 1(b)]. This effect most strongly manifests
itself in the thermally activated collective modes of the sys-
tem and thus persists even for cell sizes much larger than the
correlation length. We show that with increasing cell size the
fluctuations of the dipolar system more slowly approach the
thermodynamic regime than a condensate with contact inter-
actions.

Formalism: We work in a homogeneous quasi-2D ge-
ometry by assuming that there is a strong one-dimensional
harmonic trap of frequency ωz in the z-direction, U(z) =
1
2mω

2
zz

2, where m is the atomic mass. The condensate is
of the form ψ0(x) =

√
nχ(z), where n is the areal density.

We will consider the quasi-2D regime [37, 38] where the in-
teraction energy scale is small compared to ~ωz and χ(z) can
be taken as the ground state harmonic oscillator wave func-
tion. The chemical potential, neglecting the z confinement
energy, is given by µ = n[gs + (3 cos2 α − 1)gd] for dipoles
polarised along ê = ẑ cosα + x̂ sinα [see Fig. 1(a)], where
α is the angle between ê and the z axis [26]. We have intro-
duced gs = 2

√
2π~2as/mlz as the quasi-2D contact coupling

constant, where as is the scattering length and lz =
√

~/mωz
is the axial harmonic oscillator length. Considering magnetic
dipoles with a permanent moment µm, the quasi-2D DDI cou-
pling constant is gd = µ0µ

2
m/3
√

2πlz . The excitations are
given by Bogoliubov theory

Ek =

√
εk[εk + 2nṼ (k)], (1)

where k = (kx, ky), εk = ~2k2/2m, and nṼ (k) = µ −
3ngdG(klz/

√
2)[cos2 α − (kx/k)2 sin2 α] is the k-space in-

teraction potential between the dipoles. We have introduced
the function G(q) ≡ √πqeq2erfc(q), with erfc the comple-
mentary error function. For α = 0 (untilted dipoles) we have
Ṽ (k) = gs + gd[2− 3G(klz/

√
2)] and the DDIs are momen-

tum dependent, but isotropic. For α 6= 0 the anisotropic term
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FIG. 1. (color online) (a) Schematic: a Gaussian cell σ⊥ of size Lx-
by-Ly is used to measure atom number in a quasi-2D dipolar BEC.
Anisotropy in number fluctuations is revealed by a second cell σ‖
identical to σ⊥, but rotated by 90◦ (offset in location for clarity).
The dipoles are polarised along ê, which is tilted in the xz-plane at
an angle of α to the z axis. (b) Fluctuations as a function of cell area
for dipolar BECs with α = π/3, aspect ratio λ = Ly/Lx = 0.15
(red, ‖) and λ = 1/0.15 (blue, ⊥) and α = 0 (green) at T = 0
(dashed) and T = 2µ/kB (solid). Thin lines are from Eq. (8) at
T = 0 and Eq. (9) at T = 2µ/kB . The vertical black line is where
min{Lx,y} = ξ. Parameters A and B are detailed in Fig. 2. See text
for definitions ofAσ and ξ. Insets: schematic of cells in the xy plane.

∝ k2x/k2 contributes.
The in situ imaging of ultra-cold gases can be used to mea-

sure the atom number within finite-sized cells determined by
the combined properties of the point spread function of the
imaging system and the pixels of the camera used to cap-
ture the image [12, 13, 35]. The operator for atom number
within such a cell is N̂σ ≡

∫
d2ρσ(ρ)n̂(ρ), where σ(ρ) is the

cell weight function, and n̂ is the density operator. Consider-
ing imaging along the z direction we approximate the weight
function as the 2D Gaussian σ(ρ) = 2e−(x/Lx)

2−(y/Ly)
2

with
1/e lengths Lx and Ly along x and y, respectively. This cell
has an effective area of Aσ = 2πLxLy and an aspect ratio
of λ ≡ Ly/Lx. Having anisotropic cells (i.e. λ 6= 1) is es-
sential to probe the intrinsic anisotropy that emerges in the
dipolar BEC and can be realised by amalgamating the signal
from multiple pixels, e.g., as was done in Ref. [13].

The mean atom number per cell is Nσ = nAσ and only

depends on the cell area (i.e. independent of λ). The variance
in atom number ∆N2

σ ≡ 〈(N̂σ −Nσ)2〉 is given by [31, 36]

∆N2
σ =

∫
d2r τσ(r)[n2g(2)(r)− n2 + nδ(r)], (2)

= n

∫
d2k

(2π)2
τ̃σ(k)S(k), (3)

where g(2)(r) = n−2〈:n̂(ρ)n̂(ρ′):〉 is the density-density cor-
relation function with r = ρ − ρ′, S(k) = N−1〈δn̂kδn̂−k〉
is the static structure factor, δn̂k = F{n̂(ρ) − n} is the
density fluctuation operator, with F the 2D Fourier trans-
formation operator. The cell geometry function is τσ(r) =∫
d2ρ

∫
d2ρ′σ(ρ)σ(ρ′)δ(ρ−ρ′− r) with transform [31, 36]

τ̃σ(k) = F{τσ(r)} = A2
σe
−[(kxLx)

2+(kyLy)
2]/2, (4)

for the Gaussian cell considered here. The static structure fac-
tor is given by the Feynman relation

S(k) =
εk
Ek

(2n̄k + 1) , (5)

where n̄k = 1/(eβEk − 1) and β = 1/kBT . This result is
valid for dipolar BECs well below the condensation tempera-
ture [39] and for quasi-condensates [12, 40].

In Fig. 1(b) we consider the fluctuations using Eq. (3) as
a function of cell area Aσ for cells with long axis parallel to
the x (‖) or y (⊥) directions. We show results for a tilted
(α = π/3) and comparable1 untilted case (α = 0). The tilted
results exhibit significantly larger fluctuations when the long
axis of the measurement cell is parallel to the direction along
which the dipoles tilt, as compared to the equivalent orthogo-
nally oriented cell. These results show that this anisotropy is
strongest for moderate-area cells, and is enhanced with tem-
perature.

The behavior of ∆N2
σ is well understood for cells with di-

mensions either much larger or much smaller than the impor-
tant system length scales, i.e. the healing length ξ = ~/√mµ
and the thermal wavelength:
For small cells – the number fluctuations are dominated by
the high-k structure factor, which takes the uncorrelated value
S(k) ≈ 1 [see Fig. 3]. We can see this by noting that
through the geometry function τ̃σ(k) the dominant contribu-
tion of S(k) to the number fluctuations (3) occurs for wave
vectors |kx,y| . 1/Lx,y . Thus for small cells the uncorrelated
quantum shot noise regime is obtained and the fluctuations
are Poissonian, i.e. ∆N2

σ → Nσ [see Aσ → 0 in Fig. 1(b)].
Because it is difficult to resolve cells smaller than the system
length scales with optical imaging, it is challenging to directly
probe this regime in experiments.
For large cells – the fluctuations are determined by the k → 0

1 The coupling constants are chosen so that both systems have the same val-
ues for µ and gd cos2 α and to be reasonably far from the stability bound-
ary.
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FIG. 2. (color online) Fluctuations as a function of cell aspect ratio
with Aσ = (60ξ)2 for parameter set A (α = π/3, ngs = 0.25~ωz ,
ngd = 0.4~ωz , black) and B (α = 0, ngs = −0.05~ωz , ngd =
0.1~ωz , green) at (a) T = 0 with thin lines from Eq. (8), (b) T =
2µ/kB with thin lines from Eq. (9).

structure factor, with S(0) = kBT/µ [see Fig. 3]. We
thus recover the classical thermodynamic result ∆N2

σ/Nσ →
S(0) = nκT kBT , where κT = 1/nµ is the isothermal com-
pressibility [i.e. T > 0 results as Aσ →∞ in Fig. 1(b)].

The small and large cell limits discussed above have no
geometry or anisotropy dependence, features that emerge for
moderate-sized cells. In Fig. 2 we compute the fluctuation for
moderately sized cells of fixed area Aσ = (60ξ)2 but varying
aspect ratio λ. For both tilted and untilted dipoles the fluctua-
tions depend on λ, however we distinguish two effects:
1. Geometry dependence: In general the fluctuations in micro-
scopic cells depend on the shape of the cell, in contrast to the
classical thermodynamic expression for macroscopic cells in
which the fluctuations only depend on the cell area. Geometry
dependence, e.g. surface area scaling of fluctuations for ideal
fermions has been studied previously [31].
2. Orientation dependence: A key prediction is that the tilted
dipolar system has anisotropic fluctuations, i.e. they depend
on the cell orientation in the xy-plane. In our results [Fig. 2]
this is revealed by asymmetry of the fluctuations under ex-
change of the cell dimensions Lx ↔ Ly (i.e. λ ↔ 1/λ), par-
ticularly obvious at non-zero temperature [Fig. 2(b)].

We focus on the experimentally relevant regime of cells
with dimensions Lx,y � ξ, where phonon modes dominate,
and the role of temperature is characterised by the phonon
thermal wavelength λT ≡ ~2/mkBTξ [13, 31]. We de-
velop an analytic model for this regime using expansions of
the structure factors about k = 0 for T = 0

S(k) =
1

2
ξk[1− n∇kṼ (0)k/2µ] +O

(
k3
)
, (6)

and for T > 0

S(k) =
kBT

µ
[1− n∇kṼ (0)k/µ] +O

(
k2
)
, (7)

where∇kṼ (0) = −3gdlz
√

π
2 [cos2 α−(kx/k)2 sin2 α] is the

directional derivative of Ṽ (k) along k evaluated at k = 0.
Both results are valid for k � 1/ξ, and additionally the finite
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FIG. 3. (color online) (a) Density-density correlation function and
(b) static structure factors, at T = 0 (dashed lines) and T = 2µ/kB
(solid lines) for parameter set A defined in Fig. 2. (inset) Bogoliubov
dispersion relation and free particle dispersion εk (gray). Along the
x, kx-axis (red) and along the y, ky-axis (blue). Parameter set B re-
sults are isotropic and the same as parameter set A along the ky axis.

temperature result also requires k � 1/λT . Result (6) is ap-
plicable to the T 6= 0 regime for wave vectors k � 1/λT ,
i.e. for k values of phonons that are thermally unoccupied.
To first order in k the quantum fluctuations (6) are isotropic
(i.e. depend only on k), whereas the T > 0 result (7) is
anisotropic if α 6= 0. This anisotropy is apparent in the k → 0
behaviour of S(k) in Fig. 3(b): the slope has opposite signs
along the kx and ky axes for our parameter choice, c.f. S(k)
at T = 0, which is clearly isotropic for small k. For the purely
contact system (gd = 0), ∇kṼ (0) = 0 and the leading order
correction to S(0) for T > 0 comes at quadratic order in k.

Evaluating (3) using the T = 0 result (6) yields the quan-
tum fluctuations

∆N2
σ

Nσ
≈ ξ√

Aσ

E(1− λ2)√
λ

+
ngd
µ

3(π/2)3/2

Aσ/(lzξ)

[
cos2 α

(
1

λ
+λ

)
− λ sin2 α

]
, (8)

valid for ξ � Lx,y � λT , whereE(u) is the complete elliptic
integral of the second kind. In this regime, the fluctuations
are dominated by quantum (unoccupied) phonon modes, and
to leading order this gives a non-extensive scaling ∆N2

σ ∝√
Nσ [31, 36]. While accessing this regime is challenging,

recent experiments in quasi-1D gases have come close enough
to infer quantum corrections [13].

In the higher temperature regime we use result (7) to find

∆N2
σ

Nσ
≈ kBT

µ

{
1 +

ngd
µ

3
√

2π√
Aσ/lz

[
cos2 α

E(1− λ2)√
λ

+ sin2 α
E(1− λ2)−K(1− λ2)

1− λ2 λ3/2
]}

, (9)

valid for Lx,y � max{ξ, λT }, where K(u) is the complete
elliptic integral of the first kind. The first right hand term
(kBT/µ) is the thermodynamic result for fluctuations, where
the rest are leading order finite cell size corrections.

The predictions of results (8) and (9) are shown in Figs. 1
and 2, and are observed to provide a good description of the
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FIG. 4. (color online) (a) Temperature dependence with Aσ =
(60ξ)2 and (b) large Aσ scaling at T = 2µ/kB , of fluctuations as a
function of cell area for dipolar BECs with α = π/3 (A), λ = 0.15
(red) and λ = 1/0.15 (blue) and α = 0 (B, green), comparing to a
contact gas, i.e. gd = 0, with same µ (C, magenta dashed-dotted).
Thin lines are the analytic approximation (9) for A and B and (10)
for C. × shows the analytic approximation (8) at T = 0. Vertical
black lines indicate the T values where λT = Lx and Ly , and mark
the transition from quantum to thermal regimes. Parameters A and B
are detailed in Fig. 2.

full numerical results for sufficiently large cells. These results
also allow us to make some observations about the orientation
dependence (the effect on fluctuations of λ ↔ 1/λ, i.e. rotat-
ing cell by 90◦), noting thatE(1−λ2)/

√
λ = E(1−λ−2)

√
λ:

(i) There is no orientation dependence for a contact gas (gd =
0) or for an untilted dipolar gas (α = 0) and by symmetry
this is true for any cell size; (ii) The orientation dependence is
enhanced for small µ, however we note that we require µ ≥ 0
for the system to be stable.

The variation of fluctuations with temperature is shown in
Fig. 4(a) revealing the transition from the T = 0 limits given

by (8) to the near linear dependence predicted by (9) at higher
temperature.

Importantly our results demonstrate a key aspect of DDIs
is to slow the approach to the thermodynamic result with cell
size. This is demonstrated in Fig. 4(b) by comparing dipolar
condensates to a condensate with purely contact interactions.
Whereas the finite size corrections to the dipolar system scale
as ∼ A

−1/2
σ as clearly seen from (9), the contact case con-

verges more rapidly as ∼ A−1σ . Indeed, for the contact case
the fluctuations including the leading order finite size correc-
tion are

∆N2
σ

Nσ
≈ kBT

µ
+
πξ2

2Aσ

(
µ

3kBT
− kBT

µ

)(
λ+

1

λ

)
. (10)

Conclusions and outlook: We have developed a theory of
fluctuation measurements made in dipolar condensates with
finite-sized anisotropic measurement cells, providing analytic
results for quantum and thermal fluctuations. A key pre-
diction is that, by tilting the dipoles, anisotropy in the fluc-
tuations arise. Our results show that this should be easily
accessible in experiments, because (i) the system does not
need to be close to the stability boundary (as is required to
see rotons [28, 41]) and (ii) the effect persists for large cells
(much greater than healing length), and thus does not re-
quire high numerical aperture imaging. We have shown that
this latter effect is assisted by the slow onset of the thermo-
dynamic limit (where anisotropy of fluctuations vanishes) as
cell size increases, arising from the long range DDI. Through
the use of a local density approximation [12, 13] (validated
for DDIs in Refs. [33, 42]) our result is applicable to con-
densates in pancake shaped traps, or as in Ref. [11, 15] to
the central region of such a system where the average den-
sity is approximately constant. Our predictions will be real-
isable with current experiments, e.g. parameter set A corre-
sponds to N = 3.5 × 104 164Dy atoms with as = 4 nm in
a (ωρ, ωz) = 2π×(10, 1900) s−1 trap (c.f. [11]), and the re-
sults in Fig. 2 are for a cell of area Aσ ≈ 800µm2. The
temperatures we have considered are less that 0.4T 0

c , with
T 0
c =
√

6N~ωρ/πkB the ideal condensation temperature. We
have also validated the slow approach to the thermodynamic
limit in the central region of the trapped system (where the
mean density does not vary significantly) with full calcula-
tions including the trapping potential.
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