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Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are
investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross-
section have been experimentally observed to split at radial locations and recombine into the global
eigenmode with a time shorter than the typical DW period (t ≪ f−1

DW
). The number of splits

correlates with the increase of turbulence. The observed dynamics can be theoretically reproduced
by a Kuramoto-type model of a network of radially coupled azimuthal eigenmodes. Coupling by
E×B-vortex convection cell dynamics and ion gyro radii motion leads to cross-field synchronization
and occasional mode splitting events.
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Nonlinear coupling leads to complex dynamics like syn-
chronization, chaos, and broadband turbulence in flu-
ids and plasmas. In magnetized plasmas the pressure-
gradient-driven drift wave (DW) instability is a paradigm
for nonlinear mode-mode coupling. Nonlinearly-
generated DW vortices lead to cross-field transport and
plasma turbulence [1, 2]. Due to energy transfer via
inverse cascades by quasi-2D dynamics [3], large scale
structures can be formed out of turbulence [4, 5]. Global
eigenmode formation is common not only in plasma
physics, but also in quasi-2D fluid dynamical systems
with an axis of rotational symmetry [6]. A detailed un-
derstanding of the development of coherent structures
out of an underlying instability is of fundamental inter-
est in self-organization [7] and pattern-formation [8].
Experiments in cylindrical geometry have long been

used to study the DW and the transition to turbulence
[9–13]. Depending on operation parameters and bound-
ary conditions, coherent eigenmodes, nonlinearly coupled
modes, and broadband turbulence can all be observed
[15–18]. This letter reports experimental observations
of spatiotemporal mode splitting of ‘global’, i.e., spa-
tially extended coherent, DW eigenmodes and a theoret-
ical model that reproduces this phenomenon. With in-
creasing turbulent dynamics the global eigenmodes more
frequently shear apart for a time interval t ≪ f−1

DW. Stan-
dard models of DWs (e.g. Hasegawa-Wakatani) are un-
able to predict or explain these mode splitting events.
The quasi-stability of the global mode structure can be
understood by an ensemble of nonlinearly coupled eigen-
modes. A standard Kuramoto-type model of coupled
oscillators [19, 20] is modified by adding both self and
mutual mode coupling. The basic plasma physics is in-
corporated through the nonlinear coupling terms, which
are calculated from experimentally measured local DW
dispersion relations and modeled E × B-vortex dynam-

ics. Cross-field synchronization leads to the formation of
quasi-stable global eigenmodes that undergo mode split-
ting events via phase slippages.
The experiments were performed in the cylindrical

CSDX device [13] (length 2.8m, radius 0.1m) which pro-
duces a sharply peaked [14] magnetized argon plasma
using an m = 0 helicon antenna (radius 7.5 cm). Typical
operating parameters are 1.6 kW rf input power and gas
pressure of 0.42Pa. Radially movable multi-tip Lang-
muir probes [21] are used to measure radial profiles of
standard plasma parameters and vorticity [22]. The in-
tensity of visible light in the azimuthal cross-section is
measured by a Phantom V710 high speed camera using
filters for detecting emission from neutrals and ions [23].
The focal plane is imaged by a telescope setup onto the
camera chip (DOF ∼ 10 cm, parallax < 0.5◦) [23, 24].
Ẽ × B-vorticity fluctuations (Ω̃ = ∇ × ṽE×B) are mea-
sured with a 3×3 probe array [21] and are associated with
light intensity fluctuations (zero-lag correlation values of
≈ 0.5 − 0.8). Light fluctuations represent the dynamics
of density fluctuations [25] and the dynamics of Ẽ × B-
vorticity [26].
In the studied magnetic field range of B = 40−240mT

the pressure driven DW instability dominates the dy-
namics in the density gradient region (r = 1 − 6 cm)
[24] with ωDW < k‖vTe

. Azimuthal FFT decomposition
of the camera images is used to obtain azimuthal eigen-
modes [27–36]. Radial profiles of the light fluctuation
amplitude and the azimuthal angle (phase) are mode-
selectively extracted to study the temporal evolution of
the 2D structure of eigenmodes. In weakly developed
turbulence (at B = 90mT) global eigenmodes propagate
and split occasionally in time intervals < 0.2f−1

DW. In
CSDX, for these parameters the eigenmodes m = 1, 2, 3
are dominant [13, 38, 39]. For example, we show the dy-
namics of the m = 2 mode (similar dynamics is observed
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for m = 1 and m = 3). Figure 1 shows a clockwise-
propagating m = 2 mode as it undergoes a radial mode-
splitting event. At t = 0 the mode structure is glob-
ally coherent [Fig. 1(a,b)]. Within a quarter period,
the mode structure undergoes a complete split and re-
combination: at a radius of r ∼ 2 cm the inner mode
structure propagates slightly backwards (t = 19µs) and
splits at t = 38µs while the outer mode continues its
propagation. Eventually the inner and outer eigenmode
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FIG. 1: (Color online) Temporal evolution of a mode split-
ting event of an m = 2 mode (fDW ∼ 4.9 kHz, B = 90mT).
The bottom row shows the mode structure normalized to the
azimuthal mode amplitude for each radius to visualize mode
splits in low amplitude regions.

structures recombine [Fig. 1(g,h)]. Mode splitting is ob-
served at various radii, however, the events are predomi-
nantly observed close to the core and in the edge region.
In Figs. 1(d,f) mode splits happen at r ∼ 1 cm and at
r ∼ 6 cm. Figure 2 illustrates the temporal evolution of
azimuthal phases at two slightly different radial positions.
According to the propagation of the mode structure, the
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FIG. 2: (Color online) Temporal evolution of (a) the az-
imuthal phases of an m = 2 mode at two different radii and
(b) the difference θ2 − θ1. Diagrams (c,d) show an enlarged
part of the time traces of diagrams (a,b) and (e) the mode
amplitude. In diagrams (a) and (c) initial phases are set to
θ1 = θ2 = 0. (r1 = 2.0 cm, r2 = 2.6 cm)

azimuthal phases increase in time for both positions [Fig.
2(a)] with an angular velocity according to the Doppler-
shifted electron diamagnetic drift at each radius. The
velocity ∂tθ is not constant in time, however, and the
phase difference between two radially separated eigen-
modes [Fig. 2(b)] reveals discrete steps of 2π known as
phase slippages. With the definition ∆θ = θ(r2) − θ(r1)
(with r2 > r1) phase slippages are predominantly positive
close to the core region and negative in the edge region.
Figures 2(c,d) show a detailed time interval with three
typical phase slippages. Sometimes a slippage starts
to evolve but then the phase difference is pulled back
[Fig. 2(d)]. In the following we call such events “phase
pulling”. The mode amplitudes (∼ vorticity) decrease at
both radial positions during phase slippages and phase
pulling [Fig. 2(e)]. Figure 3 compares the dynamics of
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FIG. 3: (Color online) Temporal evolution of (top) the phase,
(center) phase difference and (bottom) phase velocity of an
m = 2 mode at two different radii for (left) phase pulling
and (right) a phase slippage. (r2 > r1, r1 blue circles, r2 red
squares)

phase slippages and phase pulling. For phase pulling the
outer mode starts to accelerate and the inner mode fol-
lows with a time lag of τ ∼ 10µs. This behavior results
in a temporary non-zero phase difference [Fig. 3(a,b)] and
velocity increase for the outer and inner mode [Fig. 3(c)].
For phase slippages, the modes accelerate in opposite di-
rections [Fig. 3(f)]. One mode accelerates until the phase
difference again becomes small (passing through 2π) and
then decelerates (the other first decelerates and then ac-
celerates). After the phase slippage both modes again
propagate with the same velocity.
The effective frequency of uncoupled DWs corre-

sponds to the E × B-Doppler-shifted electron diamag-
netic drift [3] ω(r,m) = ω∗(r,m) + mωE×B(r), with
ω∗ = −kBTek⊥(eB(1 + k2⊥ρ

2
s ))

−1 (∂r lnne + ∂r lnTe), kB
being the Boltzmann constant, Te(r) the electron tem-
perature, e the elementary charge, B the magnetic in-
duction, ρs = {miTe/(eB

2)}1/2 the drift-scale, mi the
ion mass, k⊥(r,m) = m/r the perpendicular wave num-
ber, ne(r) the density, ωE×B = −(Br)−1∂rφ(r) and φ(r)
the plasma potential. The radial profiles of ω(r,m) [Fig.
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4(a)] are obtained from experimentally measured radial
profiles of ne, φ and Te [24].
In the following the phase dynamics of global eigen-

modes is modeled by a network of Kuramoto-type phase-
coupled azimuthal eigenmodes (oscillators) [19]. For each
mode numberm a radial set ofN (here N = 100) radially
coupled azimuthal eigenmodes is considered. The tem-
poral evolution of the azimuthal phase θmi at a radial
position ri (1 ≤ i ≤ N) is given by

∂θmi

∂t
= ωmi +

M∑

l=1

N∑

j 6=i

Kmi,lj sin(θlj − θmi) , (1)

with ωmi being the eigenfrequency of the ith oscillator
of mode m and Kmi,lj the coupling strength between the
jth oscillator of mode l and the ith oscillator of mode m.
The sum of index j is the contribution of radial coupling
from mode l (summed over M eigenmodes) at position
rj to mode m at ri. For l = m the coupling matrix
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FIG. 4: (Color online) (a) Doppler shifted dispersion relation
f = ω(r,m)/(2π) from measured average profiles of φ, ne and
Te. (b) E × B-vortex coupling model (ρ radial coordinate
of vortex, φv(ρ) vortex potential profile, dσ part of secant
(green) of radial oscillator at rj).

Kmi,lj describes the radial self-coupling of an eigenmode
and for l 6= m it represents mutual mode coupling. The
eigenfrequencies ωmi are calculated from the experimen-
tally measured DW dispersion ω(r,m) [Fig. 4(a)]. It is
assumed that the qualitative structure of the radial cou-
pling matrices is the same for self-coupling and for mode-
mode coupling. The matrices differ only by a constant
factor Aml, i.e., Kmi,lj = AmlKij (caused by the larger
overlap of a mode with itself, we assume Am=l > Am 6=l).
The underlying physics is included in the coupling co-

efficient matrix Kij . Significant coupling of azimuthal
eigenmodes results from cross-field drifts and ion gyra-
tion. We include E × B-vortex coupling (Vij) and ion
gyro radius coupling (Gij) with Kij = (Vij +Gij)(rj/ri),
where rj/ri considers the circumference ratio of az-
imuthal eigenmodes. (Coupling due to the ion polariza-
tion drift is neglected in this model since |vE×B |/|vpol,i| ∼
ωci/ωDW ≫ 1.) The potential perturbation correspond-
ing to a DW creates cross-field plasma transport by
E × B-vortex dynamics. Consequently, azimuthal DW
eigenmodes at different radii are mutually interacting by

cross-field plasma flows. According to the observed corre-
lation between decrease of vorticity (∼ E × B coupling)
and phase slippages [Fig. 2(e)], it is assumed the cou-
pling strength scales with vorticity. Figure 4(b) shows a
simple illustration of how Vij is calculated. As a mea-
sure for the coupling strength from an oscillator at rj
to an oscillator at ri the particle flux within the vor-
tex from rj to ri is calculated within the red trajecto-
ries of Fig. 4(b). The coupling matrix is calculated by
Vij =

∫
Γn,je

−tij/τdσ, where Γn,j = ñ(rj) · ṽE×B(ρ) with
ñ(rj) being the density fluctuations at radius rj , ṽE×B(ρ)
the vortex velocity at the distance ρ from the vortex cen-
ter. The time the plasma element takes to travel from
rj to ri is tij ∼ lij/ṽE×B, where lij is the length along
the trajectory. The lifetime of a perturbation is assumed
to be τ ∼ ρs/vth,i (about 50µs in the model), with vth,i
being the thermal ion velocity. The ion gyro radius rci
is of the order of ∼ 0.5 cm for Ti ∼ 0.4 eV [37]. Ion
gyro radius coupling from rj to ri is assumed to be pro-
portional to the ion flux, i.e., Gij = n(rj)vth,i sin(α),
with α = arccos(|ri − rj |/rci) being the angle between
the ion trajectory centered at rj and the oscillator plane
at ri. The corresponding coupling matrix is depicted in
Fig. 5(a). E × B-vortex coupling results in the flat pat-
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FIG. 5: (a) Coupling coefficient matrix and (b) averaged ra-
dial frequency profiles of m = 2 mode in KM model for three
different coupling amplitudes a0 with a0Kmi,lj .

tern spread across the whole radial range. The structure
around ri ∼ rj is from ion gyro radius coupling exhibit-
ing a short effective coupling range of ∼ rci.
Comparing Fig. 4(a) with Fig. 5(b) shows importance

of the coupling terms. Figure 5(b) depicts the averaged
phase velocities of the m = 2 mode for different coupling
strengths. Without coupling the model reflects only the
eigenfrequencies ω(r,m). With non-zero coupling coeffi-
cients, radially extended regions of equal phase velocity
are formed. Measurements of radial profiles of density
and potential fluctuations show similarly extended re-
gions of constant frequency [24]. The larger the coupling
strength the broader the phase-synchronized regions be-
come. According to the Doppler-shifted dispersion rela-
tion [Fig. 4(a)] of uncoupled DW modes no stable global
eigenmodes would form. However, the mutual synchro-
nization of azimuthal eigenmodes at different radii results
in the formation of global azimuthal eigenmodes.
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This is the first model which can reproduce the ob-
served eigenmode splitting events as shown in Fig. 1.
Figure 6 depicts the phase dynamics of the m = 2
mode obtained from the Kuramoto model including self-
coupling and mutual mode coupling between the modes
m = 1, 2, 3. The radial amplitude dependence is taken
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FIG. 6: (Color online) Cross-sectional dynamics of the m = 2
mode modeled by a Kuramoto model including two coupled
modes (m = 1, 2). The bottom row shows the mode structure
normalized to the azimuthal mode amplitude for each radius
to visualize mode splits in low amplitude regions.
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FIG. 7: (Color online) Phase pulling (left) and phase slippage
(right) obtained from Kuramoto-type phase coupling. Tem-
poral evolution of (a,d) the phase, (b,e) the phase difference
and (c,f) the phase velocity. (blue dashed: r2, red solid: r2,
with r2 > r1)

to be the average experimental amplitude profile. The
model shows formation of global radial-azimuthal eigen-
modes [Fig. 6(a) shows the m = 2 mode] due to syn-
chronization through cross-field radial coupling. Simi-
lar to the experimental observations in Fig. 1 frequently
mode splits of the global mode occur at outer radii [Fig.
6(a,b)] and inner radii [Fig. 6(e,f)]. After a mode split
the mode structure recombines to the global eigenmode
[Fig. 6(g,h)].
Figure 7 shows modeled phase traces from nearby ra-

dial locations, demonstrating a phase pulling and a phase
slippage event. The modeled phase traces are highly sim-
ilar to those obtained from measurement [Fig. 3]. The

details of both phase pulling events and phase slippages
are reproduced [compare Figs. 7(b,e) with Figs. 3(b,e)]
and the phase velocities agree qualitatively and quanti-
tatively [compare Figs. 7(c,f) with Figs. 3(c,f)].
Experimental results show that the mode split dy-

namics correlate with increasing turbulence [Fig. 8]. In
weakly developed turbulence [Fig. 8(a,d)] mode splits
mostly occur in the core and edge region. With increasing
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FIG. 8: (Color online) Radial and temporal evolution of mode
splitting events exemplarily for m = 2 and m = 3 from (top)
weak to (bottom) broadband turbulence. Black structures
corresponds to regions of radial stable modes, white structures
represent mode splits.

turbulent dynamics (increasing B) the number of mode
splits increase temporally and spatially [Fig. 8(b-c,e-f)].
Signatures of mode splits were first anticipated in Ref.

[27], however due to strong parallax in that experiment, it
could not be unambiguously verified and studied. More-
over since the radial and axial motion could not be de-
coupled clearly, the effect of radial coupling was not
found. Comparison of a Kuramoto-type phase coupling
model with experimental observations suggests that ra-
dial cross-field coupling is essential for the formation of
global DW eigenmodes. The model predicts the detailed
phase dynamics of mode splitting events. Experiments
indicate that mode splits are correlated with turbulence.
Cross-field coupling via E×B-vortex dynamics may also
occur in poloidal-toroidal DW eigenmodes in toroidal
confinement devices. Vortex dynamics may in general re-
sult in long-range cross-field coupling and can often play
a significant role in pattern formation, synchronization
and self organization independent of geometry.
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