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Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field de-
scription that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present
a method to analyze nuclear deformations at finite temperature in a framework that preserves rota-
tional invariance. The auxiliary-field Monte-Carlo method is used to generate a statistical ensemble
and calculate the probability distribution associated with the quadrupole operator. Applying the
technique to nuclei in the rare-earth region, we identify model-independent signatures of deforma-
tion and find that deformation effects persist to higher temperatures than the spherical-to-deformed
shape phase-transition temperature of mean-field theory.

PACS numbers: 21.60.Cs, 21.60.Ka, 21.10.Ma, 02.70.Ss

Motivation.— Mean-field theory is a useful method for
studying correlated many-body systems. However, it of-
ten breaks symmetries, making it difficult to compare its
results with physical spectra that preserve these symme-
tries. In addition, although mean-field theory often pre-
dicts sharp phase transitions at finite temperature, they
are washed out in finite-size systems. The challenge is
to find tools to study the properties of finite-size systems
within a framework that preserves the underlying sym-
metries while also allowing calculation of the quantities
that describe symmetry breaking in mean-field theory.
In nuclear physics, this issue is especially important

in the understanding of heavy deformed nuclei, which
are of wide experimental and theoretical interest. The
current theory of these nuclei is based on self-consistent
mean-field (SCMF) theory, which predicts both spher-
ical and deformed ground states [1] depending on the
nucleus. SCMF is a convenient tool to study their in-
trinsic structure but it breaks rotational invariance, a
prominent symmetry in nuclear spectroscopy. The oc-
currence of large deformations in the ground state and
at low excitations gives rise to rotational bands and large
electric quadrupole transition intensities between states
within the bands. At higher excitations, much less is
known experimentally. Characterization of this part of
the spectrum is needed for accurate calculation of the
nuclear level density, which is very sensitive to deforma-
tion and other structure effects; observed level densities
in rare-earth nuclei at the neutron evaporation threshold
vary by more than an order of magnitude [3]. In addi-
tion, nuclear fission is a phenomenon of shape dynamics,
and calculation of fission rates for excited nuclei requires
their level densities as a function of deformation [4].
Here we investigate nuclear deformation at finite tem-

perature using the auxilliary-field Monte Carlo (AFMC)
method, which is well suited to the study of the evolu-
tion of nuclear properties with excitation energy while
preserving rotational invariance. In particular, we cal-

culate the distribution of the quadrupole operator in
the lab frame and demonstrate that it exhibits model-
independent signatures of deformation. We use moments
of this distribution to calculate rotationally invariant ob-
servables, which allow us to extract effective values of the
intrinsic deformation and its fluctuations. Deformations
have been studied previously by the AFMC method, but
with an ad hoc prescription to extract the intrinsic-frame
properties [5]. The methods presented here should be ap-
plicable to other finite-size systems in which correlations
beyond the mean field are important.
Methodology.— Formally, we can examine the sta-

tistical characteristics of nuclei at finite excitations by
calculating the thermal expectation values of observ-
ables Ô associated with the property of interest, 〈Ô〉 =

Tr (Ôe−βĤ)/Tr e−βĤ . Here β−1 is the temperature and
Ĥ is the Hamiltonian, which we assume to be rotation-
ally invariant. We denote operators in the many-particle
space with a circumflex, to be distinguished from op-
erators in the single-particle space, which are ordinary
matrices, denoted by bold-face symbols. Also, we de-
note the trace over the full many-particle Fock space as
Tr and the trace of matrices in the single-particle space
by tr. The probability distribution of an operator Ô,

Pβ(o) = Tr[δ(Ô − o)e−βĤ ]/Tre−βĤ can be calculated us-
ing the Fourier representation of the δ function:

Pβ(o) =
1

Tr e−βĤ

∫ ∞

−∞

dϕ

2π
e−iϕo Tr

(

eiϕÔe−βĤ
)

. (1)

Eq. (1) is well-known for one-body observables Ô that
commute with the Hamiltonian, e.g., the number opera-
tor and the z-component of the angular momentum [6].
Nuclear shape is different in that the relevant oper-

ators, e.g., the quadrupole operators, do not commute
with the Hamiltonian. Nevertheless, it is possible with
Eq. (1) to define the distribution of quantum-mechanical
observables that carry information about deformation as
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well as energy. The distribution (1) can be expressed in
terms of the many-particle eigenstates of Ô and Ĥ as

Pβ(o) =
∑

n

δ(o− on)
∑

m

〈o, n|e,m〉2e−βem . (2)

Here |o, n〉 are eigenstates of Ô satisfying Ô|o, n〉 =
on|o, n〉 and similarly for |e,m〉. Eq. (2) is valid whether
or not the operators Ô and Ĥ commute. When they do
commute, they share a common basis of eigenstates such
that 〈o, n|e,m〉 = δm,n and the distribution (2) reduces
to its more familiar form Pβ(o) =

∑

n δ(o − on)e
−βen .

Note that in a finite model space the eigenvalues on form
a discrete set and Pβ(o) is a finite sum of δ functions.

In this work we consider the observable Ô to be
the spectroscopic mass quadrupole operator Q̂20 =
∑

i

(

2z2i − x2
i − y2i

)

where the sum is taken over all nucle-

ons. The probability distribution Pβ(q) of Q̂20 is defined

as in Eq. (1) with Ô = Q̂20 and o = q.

As we will show, this distribution can be accurately
computed by the AFMC method. In principle, other
methods can also be used to evaluate Eq. (2) within the
CI shell model framework. In particular, one can use the
CI approach realized by the Monte Carlo sampling tech-
nique of Ref. [7]. However, the intrinsic-frame properties
are not directly accessed by the operator Q̂20, which is
a laboratory-frame observable. We shall demonstrate in
this work that nevertheless the distribution Pβ(q) is sen-
sitive to deformation effects and that the main properties
of the deformation in the intrinsic frame can be recovered
from moments of this distribution.

Intrinsic frame quantities may be defined in terms of
the expectation values of rotationally invariant combi-
nations of the quadrupole tensor operator Q̂2µ (µ =
−2, . . . , 2) [8, 9]. The lowest-order invariant is quadratic,
Q̂ · Q̂ =

∑

µ(−)µQ̂2µQ̂2−µ. There is one third-order
invariant defined by coupling three quadrupole oper-
ators to angular momentum zero, (Q̂ × Q̂) · Q̂ =
√
5
∑

µ1,µ2,µ3

(

2 2 2
µ1 µ2 µ3

)

Q̂2µ1
Q̂2µ2

Q̂2µ3
. The fourth-

and fifth-order invariants are also unique [10] and we de-
fine them as (Q̂·Q̂)2 and (Q̂·Q̂)((Q̂×Q̂)·Q̂), respectively.
When the invariant is unique at a given order, its expec-
tation value can be computed directly from the lab-frame
moments of Q̂20, defined by 〈Q̂n

20〉β =
∫

qnPβ(q)dq. The
conversion factors are given in Table I.

n 2 3 4 5

invariant 5 −5(7/2)1/2 35/3 −(11/2)(7/2)1/2

rotor 1/5 2/35 3/35 4/77

TABLE I. First line: the ratio of the expectation value of the
invariant of order n (see text) to the n-th moment of Q̂20.

Second line: the n-th moment of Q̂20 for the rigid rotor in
units of qn0 (q0 is the rotor’s intrinsic quadrupole moment).

AFMC.— We shall use the AFMC to evaluate the dis-
tribution in Eq. (1) for Ô = Q̂20. AFMC is arguably the
most powerful computational tool for finding the ground
states and thermal properties in large-dimension many-
particle spaces. It is based on the Hubbard-Stratonovich
representation [11] of the imaginary-time propagator,

e−βĤ =
∫

D[σ]GσÛσ, where D[σ] is the integration mea-

sure, G(σ) is a Gaussian weight, and Ûσ is a one-body
propagator of non-interacting nucleons moving in aux-
iliary fields σ. Practical implementations require that
the Hamiltonian be restricted to one- and two-body
terms, and that the two-body terms have the so-called
good sign [12]. The method has been applied to nuclei
in the framework of the configuration-interaction shell
model [13–15], where it is called the shell-model Monte
Carlo (SMMC). It has been particularly successful in cal-
culating statistical properties of nuclei such as level den-
sities [16]. The distribution of Q̂20 is obtained from the
Monte Carlo sampling of fields σ as a ratio of averages

Pβ(q) =

〈

Tr
[

δ(Q̂20 − q)Ûσ

]

TrÛσ

Φσ

〉

W

〈Φσ〉−1
W , (3)

Here 〈X〉W =
∫

D[σ]WσXσ/
∫

D[σ]Wσ , where Wσ =

Gσ|Tr Ûσ| is used for the Monte Carlo sampling and
Φσ = Tr Ûσ/|Tr Ûσ| is the Monte Carlo sign function.

For a given Ûσ, we carry out the Q̂20 projection us-
ing a discretized version of the Fourier decomposition in
Eq. (1). We take an interval [−qmax, qmax] and divide it
into 2M +1 equal intervals of length ∆q = 2qmax/(2M +
1). We define qm = m∆q, where m = −M, . . . ,M , and
approximate the quadrupole-projected trace in (3) by

Tr
(

δ(Q̂20 − qm)Uσ

)

≈ 1

2qmax

M
∑

k=−M

e−iϕkqmTr(eiϕkQ̂20 Ûσ) ,

(4)
where ϕk = πk/qmax (k = −M, . . . ,M). Since Q̂20

is a one-body operator and Ûσ is a one-body propaga-
tor, the Fock space many-particle traces on the r.h.s. of
Eq. (4) reduce to determinants in the single-particle space

Tr
(

eiϕkQ̂20 Ûσ

)

= det
(

1 + eiϕkQ20Uσ

)

. Here Q20 and

Uσ are the matrices representing, respectively, Q̂20 and
Ûσ, in the single-particle space. In practice, projections
are carried on the neutron and proton number operators
as well to fix the Z and N of the ensemble [15].

We found the thermalization of Q̂n
20 to be slow with the

pure Metropolis sampling. This can be overcome by aug-
menting the Metropolis-generated configurations by ro-
tating them through a properly chosen set of NΩ rotation
angles Ω. In practice, it is easier to rotate the observ-

ables, i.e., we replace 〈eiϕQ̂20〉σ by 1
NΩ

∑

j〈eiϕQ̂20(Ωj)〉σ.
Here Q̂20(Ω) = R̂Q̂20R̂

−1 with R̂ being the rotation op-
erator for angle Ω. Details will be given elsewhere.
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FIG. 1. The ground-state distribution Pg.s.(q) vs q/q0 for a
prolate rotor with intrinsic quadrupole moment q0.

We next discuss a few simple examples that can be
treated analytically or nearly so.
Rigid rotor.— As a first simple example, we consider an

axially symmetric rigid rotor with an intrinsic quadrupole
moment q0 in its ground state. The distribution of
its spectroscopic quadrupole operator in the laboratory
frame Q20 = q0(3 cos

2 θ−1)/2 can be calculated in closed
form. For a prolate rotor (q0 > 0)

Pg.s.(q) =

{

(√
3q0

√

1 + 2 q
q0

)

for − q0
2 ≤ q ≤ q0

0 otherwise
.(5)

This distribution is shown in Fig. 1. The oblate rotor
(q0 < 0) distribution is obtained from (5) by replacing
q with −q and q0 with |q0|. The moments of the dis-
tribution (5) can be calculated from a simple recursion
relation; their values for 2 ≤ n ≤ 5 are given in Table I.

20Ne.— As a simple illustration in nuclear spec-
troscopy, we consider the light deformed nucleus 20Ne.
The orbital part of the single-particle wave functions are
taken to be the states of the N = 2 harmonic oscillator
shell, i.e., the sd-shell. The single-particle eigenvalues of
Q20 are -2, 1, and 4 (in units of b2 [17]) with degeneracies
of 6, 4 and 2, respectively. The many-particle eigenvalues
of Q̂20 for

20Ne in the valence sd-shell thus range from −8
to 16 with a uniform spacing of 3. The distribution Pβ(q)
at β = 0 is just the distribution of these eigenvalues.
We have used this nucleus as a simple test of the

AFMC. Here we take the single-particle energies accord-
ing to the USD interaction [18] and consider an attrac-
tive quadrupole-quadrupole interaction −χQ̃ · Q̃, with
Q̃2µ =

∑

i r
2
i Y2µ(r̂i) and χ = 8π

5
38.5
A5/3 MeV/b4 [19]. In

Fig. 2 we show the quadrupole distribution of the 20Ne
ground state. The discrete nature of the many-particle
eigenvalues of Q̂20 is evident; the distribution is a set δ
functions at integers −8,−5, . . . , 13, 16. The envelope of
the strengths has the skewed shape that looks qualita-
tively similar to the prolate rigid-rotor distribution.
SCMF.— It is instructive to compare our results with

those of the thermal SCMF, e.g., the finite-temperature
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FIG. 2. The AFMC ground-state quadrupole distribution
Pg.s.(q) for 20Ne. The sharp δ-like peaks demonstrate the

discrete nature of the spectrum of Q̂20 and their envelope
resembles the prolate rigid-rotor distribution in Fig. 1.

Hartree-Fock-Bogoliubov (HFB) approximation. The
HFB solution is characterized by temperature-dependent
one-body density matrix ρβ and pairing tensor κβ . In
general, two types of phase transitions can occur vs
temperature, a pairing transition and a deformed-to-
spherical shape transition [20–22]. A shape phase tran-
sition is also the generic result of a Landau theory in
which the order parameter is the quadrupole deforma-
tion tensor [23]. The vast majority of deformed HFB
ground states are axially symmetric [24], i.e., 〈Q̂2µ〉 = 0

for µ 6= 0. The second-order invariant 〈Q̂ · Q̂〉 may be
calculated in HFB by using Wick’s theorem

〈Q̂ · Q̂〉 = Q2
0 +

∑

µ

(−)µtr [Q2µ (1− ρβ)Q2−µ ρβ ]

+
∑

µ

(−)µtr
[

Q2µ κβ Q
T
2−µ κ

∗
β

]

, (6)

where Q0 ≡ tr(Q20ρβ) is the intrinsic axial quadrupole
moment. The remaining terms on the r.h.s. of (6) repre-
sent the contributions due to quantal and thermal fluc-
tuations. We shall compare our AFMC results for rare-
earth nuclei with the HFB theory in the next section.
Rare-earth nuclei.— Here we present results for rare-

earth nuclei. The single-particle orbitals are taken from a
Woods-Saxon potential plus spin-orbit interaction; they
span the 50− 82 shell plus 1f7/2 orbital for protons and
the 82−126 shell plus 0h11/2, 1g9/2 orbitals for neutrons.
We use the same interaction as in Refs. [25, 26]. The
quadrupole moments are scaled by a factor of 2 to ac-
count for the model space truncation.
We first examine 154Sm, a strongly deformed nucleus

with an intrinsic quadrupole moment of Q0 ∼ 1600
fm2, as determined experimentally from in-band electric
quadrupole transitions [27]. AFMC Pβ(q) distributions
are shown in Fig. 3 at three temperatures. The distribu-
tions appear continuous because the many-particle eigen-
values of Q̂20 are closely spaced. At the lowest temper-

ature of T = 0.1 MeV (bottom panel), e−βĤ effectively
projects out the ground-state band. We observe the char-
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FIG. 3. Probability distributions Pβ(q) for 154Sm at T =
0.1 MeV, T = 1.14 MeV (shape transition temperature) and
T = 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.

acteristic skewed distribution of the prolate rotor. The
dashed line is the rotor distribution (5) with q0 taken at
the HFB value of Q0. The middle panel is the distribu-
tion at the HFB shape transition temperature, T = 1.14
MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

〈Q̂ · Q̂〉 vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, 〈Q̂ · Q̂〉 for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
The same is true of the AFMC curve. In contrast, 〈Q̂ ·Q̂〉
in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
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FIG. 4. 〈Q · Q〉 vs temperature T for the spherical 148Sm
(left) and the deformed 154Sm (right). The AFMC results
(solid circles) are compared with the HFB results (dashed
lines).

sition [20, 21] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of 〈Q · Q〉 with tempera-
ture. In AFMC deformation effects survive well above
the transition temperature, in that 〈Q · Q〉 continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [28] of the collective Bohr model [29,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π〈Q̂2µ〉/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
2
β sin γ, and α2±1 = 0. Effective β and γ can

then be determined from the corresponding invariants

β =

√
5π

3r20A
5/3

〈Q̂ · Q̂〉1/2 ; cos 3γ = −
√

7

2

〈(Q̂× Q̂) · Q̂〉
〈Q̂ · Q̂〉3/2

.

(7)
In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[

〈(Q̂ · Q̂)2〉 − 〈Q̂ · Q̂〉2
]1/2

/〈Q̂ · Q̂〉 . (8)

The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
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joint level density distribution ρ(β,Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.
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