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7Laboratoire de Physique Théorique, École Normale Supérieure, Paris 75005, France

2School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

In this letter we consider the collinear limit of gluon scattering amplitudes in planar N = 4 SYM
theory at strong coupling. We argue that in this limit scattering amplitudes map into correlators of
twist fields in the two dimensional non-linear O(6) sigma model, similar to those appearing in recent
studies of entanglement entropy. We provide evidence for this assertion by combining the intuition
springing from the string worldsheet picture and the predictions coming from the OPE series. One of
the main implications of these considerations is that scattering amplitudes receive equally important
contributions at strong coupling from both the minimal string area and its fluctuations in the sphere.

INTRODUCTION

In planar N = 4 Super-Yang-Mills theory, scattering
amplitudes and null polygonal Wilson loops are one and
the same [1, 2] at any value of the coupling λ = g2YMN .
Through the prism of the AdS/CFT correspondence, a
scattering amplitude can then be viewed as a path in-
tegral over the open string configurations that end on
a light-like polygon at the boundary of AdS5 × S5. At
strong coupling, this partition function is dominated by
its saddle point which in turn is given by a minimal string
area in AdS5. For the n-gluon amplitude [1]

Wn = e−
√

λ

2π
An+... (1)

whereWn is the renormalized amplitude introduced in [3]
and An is the corresponding subtracted area of the clas-
sical string ending on the n-gon [4]. Thanks to the inte-
grability of the classical worldsheet theory, the problem
of computing this area can be reduced to solving a set of
Thermodynamic Bethe Ansatz equations with An being
identified with a free energy of sort, known as the critical
Yang-Yang functional [3, 6–8]. Except for that, little is
known about scattering amplitudes at strong coupling,
that is about the ellipsis in (1) – in contrast with the
flood of results at weak coupling [9].
Building upon earlier work [8], we proposed in [3] an

alternative method for computing the open string par-
tition function, at any value of the coupling. In this
so-called pentagon approach a generic polygon is broken
down into a sequence of pentagon transitions P between
one flux tube to the next. This decomposition takes the
form [3, 10]

Wn = 〈0|Pe−Hτn−5+iPσn−5+iJφn−5P . . .

. . .Pe−Hτ1+iPσ1+iJφ1P|0〉 . (2)

Here, τi, σi and φi are a base of conformal cross ratios
that are conjugate to the energy, momentum and angu-
lar momentum of the state that propagates in the i’th

flux tube, see [3] for more details. This representation is
particularly suitable to the analysis of the multi-collinear
limit which corresponds to the regime of large τi.
Based on this approach as well as on world-sheet con-

siderations, we shall see that at strong coupling the
collinear limit is governed by the string dynamics in the
five sphere. More precisely, we will show that in this
limit the entire partition function reduces to a correla-
tor of twist operators in the O(6) sigma model, similar
to those encountered in the study of entanglement en-
tropy [11–13].
A surprising consequence of this identification and of

the strongly coupled dynamics of the O(6) sigma model
is an additional exponentially large contribution to Wn

of the same order as the classical area An. As we will
explain, accommodating for the sphere indeed corrects
the minimal area prescription such that

logWn = −
√
λ

2π
An +

√
λ

48

(n− 4)(n− 5)

n
+ o(

√
λ) , (3)

to leading order at strong coupling. More excitingly, the
dynamics of the O(6) sigma model also allows us to start
unveiling the α′ corrections. For the six gluons ampli-
tude, for instance, we shall find that

W6 = f6 λ
− 7

288 e
√

λ

144
−

√

λ

2π
A6(1 +O(1/

√
λ)) (4)

where the λ independent prefactor f6 is a yet to be deter-
mined function of the 3 hexagon cross-ratios. Computing
this function for generic kinematics is beyond the scope of
the present paper. However, based on the O(6) analysis
alone we will predict that in the collinear limit τ ≫ 1

f6(τ, σ, φ) ≃
1.04

(σ2 + τ2)1/72
, (5)

with the critical exponent in this power-law being related
to dimensions of the twist fields mentioned before.
Finally, we will also see that another face of the strong

coupling dynamics of the O(6) sigma model is the break-
down of the string α′ expansion for extremely stretched



2

Wilson loops. Namely, we shall observe that for exponen-
tially large cross-ratios log τ ≫

√
λ ≫ 1 the open string

partition function is fully non-perturbative and governed
by the exponentially small dynamical scale of the model.
In brief, the emergence of this new scale is the main rea-
son for the richness of the collinear limit at strong cou-
pling. Studying all the various collinear behaviours and
their cross-over is the main subject of this paper.

PENTAGONS AS TWIST OPERATORS

In the collinear limit τi ≫ 1 the lightest states dom-
inate in (2). At strong coupling, these are the string
excitations in the sphere [14, 15], dual to the gauge the-
ory scalars, see e.g. figure 2 in [16]. Their dynamics is
governed by the O(6) non-linear sigma model and, in par-
ticular, their mass is non-perturbatively generated and
exponentially small at strong coupling [15]

m =
21/4

Γ(5/4)
λ1/8e−

√
λ/4(1 +O(1/

√
λ)) . (6)

All the other string excitations, i.e., both the AdS and
the fermionic modes, have masses of order 1 at strong
coupling [14, 15] and hence decouple in the collinear limit.
This leads us to interpret the strong coupling collinear

limit of (2) as a correlator in the O(6) model

Wn ≃ 〈0|φD(wn−4) . . . φD(w1)|0〉O(6) (7)

where wi − wi−1 = (σi, τi) and φD(w) are operators
whose matrix elements coincide with the pentagon tran-
sitions

〈θ′1, . . . |φD(0)|θ1, . . .〉j1,...i1,...
= P (θ1, . . . |θ′1, . . . )j1,...i1,...

. (8)

Here, θj are the usual hyperbolic rapidities parametriz-
ing the scalars’ relativistic dispersion relation while the
indices refer to the O(6) polarizations of the incoming
and outgoing multi-scalar states.
The clue about what the operator φD(w) is comes

from the observation that one needs to perform 5 so-
called mirror rotations (equivalently Euclidean boost)
θ → θ+5iπ/2 to go around the pentagon [3]. This should
be contrasted with the more standard monodromy for
conventional local operators which involves 4 such trans-
formations only. This hints that the effect of the operator
φD(w) is to generate a conical excess angle 1

4×2π around
w. Such fields are not entirely new and belong to a broad
class of operators known in the CFT literature as twist

operators [17]. Most directly relevant for our discussion
is their appearance in the context of entanglement en-
tropy [11, 12]. There, such operators were introduced to
study QFTs on k-sheeted Riemann surfaces with branch
points being viewed as twist operators with excess angle
ϕ = 2π(k−1) in the replica theory. Our case is somewhat

special in that it requires a “fractional number of sheets”
since k = 5/4 for a pentagon, see figure 1. Once can
indeed verify that the pentagon transitions in the right-
hand side of (8) satisfy the axioms for the form factors
of twist operators as spelled in [12] with k = 5/4.
The above picture can also be understood more di-

rectly from the worldsheet analysis. From our previ-
ous discussion it follows that the partition function (2)
receives, in the collinear limit, its dominant contribu-
tion from the sphere. This means that we can write
Wn ∝

∫
DXe−δSNG δ(X2 − 1) where

δSNG =

√
λ

4π

∫

d2z
√
ggαβ∂αX · ∂βX (9)

is the expansion of the Nambu-Goto action to quadratic
order in the sphere embedding coordinates X and gαβ
is the induced metric of the classical minimal surface in
AdS. We thus face the problem of computing the par-
tition function of the O(6) sigma model on the mini-
mal surface. From the low-energy viewpoint, this surface
looks everywhere flat, except for a few points where the
curvature is concentrated. Indeed the induced metric in
the collinear limit is approximately

ds2 ≃ [P (z)P̄ (z̄)]1/4dzdz̄ (10)

where P (z) =
∏n−4

j=1 (z − zj) is the auxiliary polynomial
entering the Pohlmeyer description of the minimal sur-
face [6]. In agreement with the pentagon picture, we see
that there are n−4 marked points around which we have
a conical excess of 2π × 1

4 . Following [11], the partition
function in this geometry can be recast as a correlator of
n− 4 twist operators as (7).

OPE AS FORM FACTOR EXPANSION

As elaborated above, at strong coupling, the collinear
limit is governed by the dynamics of the O(6) sigma
model whose physics is strongly coupled. As such, at the
moment, the only available tool for studying this regime
in a controllable way is the pentagon approach [3]. In
this section we will focus on the simplest possible case,
the hexagon W = W6.
Given the relativistic invariance of the O(6) sigma

model, the Wilson loop can only depend (in the collinear
limit) on the dimensionless Lorentz invariant distance

z ≡ m
√

σ2 + τ2 . (11)

For any value of z, the correlator in (7) then reads

W =
∑

n even

∫ ∏

idθi
n! (2π)n

|P (0|θ1,..., θn)i1,...,in |2 e
−z

n∑

k=1

cosh θk
.

(12)
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This is the familiar form factor expansion, which simply
follows from inserting the resolution of the identity be-
tween consecutive operators in (7). Alternatively, from
the Wilson loop point of view, this sum stands for the
truncation of the full OPE series to the scalar subsector
in the strong coupling limit.
As illustrated in [16], the transitions can be factored

out into a dynamical factor and a so-called matrix part
taking care of the matrix structure of these objects,

|P (0|θ1, . . . , θn)i1,...,in |2 = Πdyn×Πmat . (13)

Working out these contributions (most notably the ma-
trix part) in a systematic fashion is a fascinating prob-
lem which we will report elsewhere. The main conjecture
arising from this analysis is that Πmat is a simple group
theoretic factor whose derivation will be reported else-
where. It is a rational function of the rapidities θj with a
very simple integral representation involving 2n auxiliary
rapidities as

Πmat =
1

n!(n2 !)
2

+∞∫

−∞

dw1
1 . . . dw

1
n

2

dw2
1 . . . dw

2
ndw

3
1 . . . dw

3
n

2

(2π)2n

×

∏

i<j

g(w1
i − w1

j )
∏

i<j

g(w2
i − w2

j )
∏

i<j

g(w3
i − w3

j )

∏

i,j

f( 2π θi − w2
j )

∏

i,j

f(w1
i − w2

j )
∏

i,j

f(w3
i − w2

j )
(14)

with f(x) = x2 + 1/4 and g(x) = x2(x2 + 1). For any
fixed number of particles, n, the integrals over the auxil-
iary roots can be straightforwardly evaluated by residues.
Finally, the dynamical part takes the factorized form

Πdyn=µn
∏

i<j

F (θi − θj) , µ =
2Γ(34 )√
πΓ(14 )

, (15)

with

F (θ) =
8 θ tanh

(
θ
2

)
Γ
(
3
4 + iθ

2π

)
Γ
(
3
4 − iθ

2π

)

π Γ
(
1
4 + iθ

2π

)
Γ
(
1
4 − iθ

2π

) . (16)

The result (12) is a novel exact result for scattering am-
plitudes. It holds at strong coupling and in the collinear
limit with the Lorentz invariant distance (11) held fixed,
but otherwise arbitrary.

LONG AND SHORT DISTANCE ANALYSIS

Two very interesting regimes one might want to ana-
lyze in greater detail are the IR regime z ≫ 1 and the UV
regime z ≪ 1. The former is dominated by the vacuum
and is straightforwardly extracted from (12),

W = 1 +O(e−2z) . (17)

The first deviation is controlled by the 2-particle integral
analyzed in [16]. The trivialization of the Wilson loop

in this limit is in perfect agreement with the expected
behaviour of scattering amplitudes in the collinear limit.
We note that it is achieved for τ much greater than the
Compton wavelength 1/m of the lightest excitations.
As usual with such expansions, it is much more chal-

lenging to analyze the UV regime z ≪ 1. The point
is that the higher-particle terms in the sum (12) are no
longer suppressed at small z. Instead, they typically ex-
plode and the full series (12) must be resummed. The ex-
pectation – which we confirmed numerically on few exam-
ples – is that the n-particle contribution should follow the
same trend and diverge as log(1/z)n/2 at small z. Clearly,
without further information, it is challenging to predict
what the true z dependence will be upon re-summing all
contributions in (12). Fortunately, the twist-field inter-
pretation introduced before sheds light on this issue and
provides us with a physical picture for what the result
should be, as we now explain.
The hexagonal Wilson loop is computed by a correla-

tor of two twist operators in the O(6) sigma model. In
the short distance limit, these two operators are fused
according to their OPE. Given that each operator has
the effect of producing a conical excess of π/4, a pair of
close by pentagons should act as an effective ‘hexagon’
operator producing a conical excess of π/2. In sum,

φD(σ, τ)φD(0, 0) ∼ log(1/z)B

zA
φ7(0, 0) , (18)

where A = 2∆D − ∆7 = 2∆5/4 − ∆3/2 with ∆k the
dimension of the twist field. The latter dimension has
been known for a long time [18] and reads

∆k =
c

12

(

k − 1

k

)

, (19)

where c is the central charge. In our case c = 5 since the
short distance CFT is that of 5 free massless bosons. All
together, this leads to the prediction A = 1/36.
The critical exponent B might look less familiar at first

sight, as it is absent from the OPE of primaries in stan-
dard CFTs. It controls however a celebrated logarithmic
enhancement which comes about because we are dealing
with an asymptotically free theory and because our op-
erators receive anomalous dimensions. (This is very well
known from QCD and B = −(2γD − γ7)/(2β0) when
expressed in terms of one-loop anomalous dimension and
beta function coefficients, see e.g. [19].) Unfortunately,
to our knowledge, these anomalous dimensions are not
yet available from direct QFT computations. Still, it is
possible to argue for a possible relation between them
and the free energy of the O(6) sigma model. We defer
the details of the argument to the [20] and quote here the
main conjecture B = −3A/2.
All in all, once inserted into the correlator (7) the OPE

(18) generates the short distance behaviour

W(z) =
C

z1/36 log(1/z)1/24
+ . . . (20)
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where C is a constant which reflects the freedom in adopt-
ing different normalizations for the twist fields. For the
problem at hand, the physical normalization is set by the
collinear limit. Namely, it is unambiguously fixed by the
long distance asymptotics (17). Because this condition
is imposed in the IR, where the non-perturbative physics
dominates, it is challenging, if not impossible, to fix C
from the CFT directly. What we can do, however, is to
fix our constant C numerically, through the exact series
representation (12) truncated at some large number of
particles. Dealing with the multi-dimensional integrals
in (12) is numerically challenging. One way to do it is
by Monte-Carlo, along the lines of [21] which analysed a
similar (yet simpler) form factor sum related to a corre-
lator in the 2d Ising model. In figure 2 we represent the
numerical evaluation of the OPE series for increasingly
small values of z. Once we subtract the leading and sub-
leading logarithmic behavior from these numerics, logW
does approach a constant value. In this way we read
logC ≃ −0.01. It would be interesting to improve the
numerics and get C with higher precision. Even better,
it would be great if we could compute it analytically from
the OPE sum (12).

CROSS-OVER AND CLASSICAL

ENHANCEMENT

We are now in position to explain the prediction (4),
(5) for the α′ expansion of the six-gluon amplitude. Es-
sentially what we want to show is that the short-distance
O(6) result (20) is enough to fix the prefactor dressing
the minimal area prediction (1) in the collinear limit. In
this limit the classical area A6 falls off exponentially [8]

A6 = O(e−
√
2τ ) , τ ≫ 1 , (21)

and similarly for the n-gluon area An in the multi-
collinear limit τi ≫ 1. This behaviour is most clearly
understood by recalling that the AdS5 modes, which con-
trol the physics of the minimal surface, all have masses
of order O(1). (The lightest ones have mass

√
2 [14, 15]).

Therefore, whatever survives in the collinear limit is nec-
essarily captured by the prefactor dressing the minimal
area prediction (1).
That the aforementioned prefactor is non-trivial in this

limit directly follows from our previous analysis. The
main point is that regardless of how big τ is, from the
string α′ expansion point-of-view, we always end up in
the short-distance regime z ≪ 1 of the O(6) model. In-
deed, for fixed τ and very large λ, the dimensionless dis-
tance z given by (11) is very small. In other words, z ≪ 1
is the cross over domain between the non-perturbative
regime z ∼ 1 analyzed in this paper and the perturba-
tive regime of the string worldsheet theory.
This being said, it is straightforward to convert the

short-distance result (20) into the prediction (4), (5). It

literally amounts to matching the latter against the for-
mer using the expressions (11) and (6) for the distance z
and the mass gap m.
What is perhaps the most surprising outcome of all

this analysis is the semi-classical enhancement stemming
from the dynamics in the sphere. Namely, we see that
the contribution from the sphere is visible already at the
leading order in the

√
λ expansion. Technically, this is a

consequence of the fact that the twist fields carry scaling
dimensions. Namely, our correlators are all dimensionless
by construction and thence all distances come multiplied
by m. In the short distance limit the overall dependence
on the mass of the correlators can then be directly read
off the OPE of the twist fields. In the case of n-gluon
scattering, we would have n− 4 pentagons that fuse to-
gether into an object with excess angle ϕ = 2π × n−4

4 .
Keeping track of the mass dependence only we would
then write

φD . . . φD
︸ ︷︷ ︸

n−4

∼ m−(n−4)∆( 5

4
)+∆(n

4
)φϕ (22)

which immediately leads to (3).
As a final remark, let us add that the O(6) model

can also be used to predict the pre-factor dressing
the strong coupling result (3) in the multi-collinear
limit for any n-gon. To leading order at strong
coupling, it should relate to the correlation func-
tion 〈φD(w1) . . . φD(wn−4)φϕ(∞)〉CFT in the free theory
whose computation should lead to a beautiful mathemat-
ical problem in classical Liouville theory [22].

CONCLUSIONS

In this paper we start unveiling the structure of
scattering amplitudes at strong coupling in planar
N = 4 SYM theory beyond the minimal area paradigm.
In particular, we have seen how strong coupling dy-
namics might challenge our intuition about scattering
amplitudes, or their dual description in terms of Wilson
loops, already in such a seemingly simple regime as the
collinear limit. The rich behaviour we observed directly
reflected the strong IR effects on the dual world-sheet
which come about because the colour flux tube of the
theory is infinite and its spectrum effectively gapless at
strong coupling. These features will survive beyond the
planar limit and are common to some other strongly
coupled flux tubes, see e.g. [24].
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FIGURES

FIG. 1. (a) The world-sheet of the string ending on a pen-
tagon can be viewed as made out of five quadrants. (b) Equiv-
alently, we can engineer these five quadrants starting from the
square by inserting the twist operator φD.

FIG. 2. Plot of logW truncated to nmax particles for z’s
as small as 10−6 and as large as 1/250. The 2-particle ap-
proximation corresponding to nmax = 2 (i.e., the upper line)
already yields a reasonable estimate of the exact result; this is
not unusual for such form factor representations, see e.g. [12].
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