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We investigate the far-from-equilibrium nature of magnetic anisotropy and exchange interactions
between molecular magnets embedded in a tunnel junction. By mapping to an effective spin model,
these magnetic interactions can be divided into three types: isotropic Heisenberg, anisotropic Ising,
and anisotropic Dzyaloshinski-Moriya contributions, which are attributed to the background non-
equilibrium electronic structures. We further demonstrate that both the magnetic self and exchange
interactions can be controlled either electrically by gating and tuning voltage bias, or thermally by
adjusting temperature bias. We show that the Heisenberg and Ising interactions scale linearly, while
the Dzyaloshinski-Moriya interaction scales quadratically, with the molecule-lead coupling strength.
The interactions scale linearly with the effective spin-polarizations of the leads and the molecular
coherence. Our results pave a way for smart control of magnetic exchange interactions at atomic and
molecular levels.

PACS numbers: 73.63.Rt, 07.79.Cz, 72.25.Hg

Magnetic interactions is a field of continuously intense
activities addressing questions ranging from fundamen-
tal physics to technological applications. While control
of magnetic interactions is straightforward using mag-
netic field, control by the means of electric field presently
is an emerging technique. Technological advances such
as magnetic memories, magnetic logic gates, and quan-
tum computation, can be envisioned once current con-
trolled magnetic logic circuits have been achieved.

On the one hand, as the technological advances are
striving towards the atomic and molecular scale, ex-
periments on magnetic atoms adsorbed onto different
surface materials have demonstrated anisotropic effects
on spin excitations [1–4], anisotropic Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [5], entanglement of
spin excitations and Kondo effect [6–8], and formation of
stable magnetic configurations [9–11]. Molecular mag-
nets have also been realized in various molecular com-
plexes comprising transition metal atoms [6, 12–17], sin-
gle molecular magnets [18, 19] and antiferromagnetic
rings [20–26]. These experimental advances open new
alternatives to design multi-functionalities of nanoscale
devices [22, 27–31].

On the other hand, the theoretical understanding of
magnetic interactions at nanocale develops at a fast
pace. Recent theoretical advances include phenomeno-
logical and microscopic descriptions of spin dynamics
[32, 33], non-equilibrium formulation of RKKY inter-
action [34], detailed analysis of exchange interactions
in non-collinear magnetic materials [35], and magnetic
anisotropy in quantum spintronics [36]. However, a
comprehensive fundamental understanding of the mi-
croscopic mechanism of magnetic interactions is still
lacking, which hinders us from more flexible control of
spin dynamics at nanoscale.

Here, we uncover the far-from-equilibrium nature of
magnetic interactions between molecular magnets em-
bedded between metallic leads. We find that magnetic
self and exchange interactions, which are effectively me-
diated by the electron flow in the system, can be parti-
tioned into isotropic Heisenberg, anisotropic Ising and
Dzyaloshinski-Moriya (DM) interactions. The first two
interactions scale linearly with the strength of coupling
to the leads while the DM interaction scales quadrati-
cally. The interactions, moreover, scale linearly with the
effective spin-polarizations of the leads and the molecu-
lar coherence. We demonstrate that both the magnitude
and the character of the interaction, i.e. ferromagnetic
or antiferromagnetic, can be controlled electrically by
gating and tuning voltage bias, and thermally by adjust-
ing temperature bias between the leads. Our results for
the self interactions reproduce and generalize the results
for magnetic anisotropy discussed in Ref. 36, hence our
focus in this paper is on the exchange interactions.

We model the magnetic molecule n by a spin mo-
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FIG. 1: (Color online) Sketch of magnetic molecules embedded
in a junction between magnetic leads. Electrons may tunnel
between the electrodes and the localized levels εn and between
the levels. An electron residing in level n interacts with the
localized spin moment Sn. The set-up may be achieved by,
e.g., stacking molecules on top of each other on a surface, or
constructing a chain on an insulating surface, using scanning
tunneling microscopy techniques.
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ment Sn, which is coupled to a single level εnσ via
exchange Hint =

∑
n vnsn · Sn, see Fig. 1. Here, sn =∑

σσ′ c†nσσσσ′cnσ′/2 represents the delocalized electron
spin, where c†nσ (cnσ) denote the electron creation (annihi-
lation) in the single level of the nth molecule, whereas vn
is the coupling strength, and σ is the vector of Pauli
matrices. The molecular complex is represented by
HM =

∑
nσ[εnσc†nσcnσ+Tc(c†nσcn+1σ+H.c.)]+Hint, whereTc

denotes the tunneling rate between adjacent molecules
[37]. The molecules are coupled to the electrodes with
rateTχ, χ= L,R, where L (R) denotes the left (right) lead.
The leads are specified by their respective chemical po-
tential µχ and temperature Tχ, and we consider constant
voltage and thermal bias. The full system is represented
by the Hamiltonian

H =HL +HR +HT +HM. (1)

Here, Hχ =
∑

kσ(εkσ − µχ)c†kσckσ represents the Hamil-
tonian for the lead χ, where c†kσ (ckσ) creates (annihi-
lates) an electron in a lead with energy εkσ, momen-
tum k, and spin σ =↑,↓, and we shall use k = p (q)
for the left (right) lead. The tunneling Hamiltonian
HT =HTL +HTR, where HTL = TL

∑
pσ c†pσc1σ + H.c., and

analogously for the right interaction, assuming that the
spin is conserved in the tunneling process. The model
we use pertains to, e.g., paramagnetic M-phthalocyanine
(MPc) and M-porphyrine molecules [6, 12, 13, 38], where
M denotes a transition metal element (Cu, Fe, Ni, Co,
Mn), and similar structures where the magnetic moment
is carried by the transition metal d-orbitals which are
weakly interacting with the delocalized s- and p-orbitals
that carry the charge conduction.

The local interactions between the spin moment Sn
and electrons in level εnσ give rise to a contribution δS
to effective spin action Seff [33, 39, 40], given by

δS =
1
e

∑
mn

∫
[εmjmn(t, t′) + Sm(t) · Jmn(t, t′)] ·Sn(t′)dt′dt,

(2)

The contribution εmjmn = ieεm Jnθ(t − t′)〈[s(0)
m (t),sn(t′)]〉

provides the magnetic field exerted on the local
spin moment due to electron flow. Here, εm =

diag{εmσ εmσ̄} and s(0)
m =

∑
σσ′ c†mσσ0

σσ′cmσ′/2 =
∑
σ c†mσcmσ/2

is the charge, where σ0 is the identity matrix. The cur-
rent Jmn = ievmvnθ(t− t′)〈[sm(t),sn(t′)]〉 carries the mag-
netic anisotropy and exchange interactions between the
local magnetic moments Sm. As the first contribution in
Eq. (2) was discussed in [36], our primary focus will be
on the second.

The self interaction Jmm defines the anisotropy field
acting on the local spin moment Sm, while Jmn mediate
the exchange interaction between two different spin mo-
ment Sm and Sn. For small coupling vm we can neglect
the back-action from the localized spins on the electrons.

In the stationary regime we can therefore express the
current Jmn in energy space as

Jmn(ω) =
e
4

vmvn

∫
1

ω−ε+ε′+ iδ
sp σ

(
G<

mn(ε)σG>
nm(ε′)

−G>
mn(ε)σG<

nm(ε′)
) dε
2π

dε′

2π
. (3)

Here, G</>
mn is the lesser/greater (spin space matrix)

Green function (GF) for propagation of an electron from
molecule n to m. sp is the spin space trace and the prod-
ucts sp[σGmn][σGnm] are dyads defined as ab = aib j îĵ
such that Jmn constitutes a tensorial quantity.

The electron GF Gmn can always be partitioned into
charge and magnetic components, g(0)

mn and g(1)
mn, accord-

ing to Gmn = g(0)
mnσ

0 + g(1)
mn ·σ. In terms of this notion it is

straightforward to see that the localized molecular spins
in Eq. (1) can be mapped into an effective Hamiltonian
HS corresponding to the interaction

∫
Sm ·Jmn ·Sndtdt′/e.

This effective spin interaction model can be written as

HS =
∑
mn

Sm ·
(
JmnSn + Imn ·Sn + Dmn×Sn

)
, (4)

where the three contributions in the above model de-
scribe Heisenberg, Ising, and DM interactions, respec-
tively, given by the ω→ 0 limit of the integrals

Jmn(ω) =
1
2

vmvn

?
1

ω−ε+ε′

(
g(0)<

mn (ε)g(0)>
nm (ε′)

− g(0)>
mn (ε)g(0)<

nm (ε′)−g(1)<
mn (ε) ·g(1)>

nm (ε′)

+ g(1)>
mn (ε) ·g(1)<

nm (ε′)
) dε
2π

dε′

2π
, (5a)

Imn(ω) =
1
2

vmvn

?
1

ω−ε+ε′

(
g(1)<

mn (ε)g(1)>
nm (ε′)

−g(1)>
mn (ε)g(1)<

nm (ε′)−g(1)<
nm (ε′)g(1)>

mn (ε)

+ g(1)>
nm (ε′)g(1)<

mn (ε)
) dε
2π

dε′

2π
, (5b)

Dmn(ω) =
1
4

vmvn

? (
g(0)<

mn (ε+ω)g(1)>
nm (ε)

− g(0)>
mn (ε+ω)g(1)<

nm (ε)−g(1)<
mn (ε+ω)g(0)>

nm (ε)

−g(1)>
mn (ε+ω)g(0)<

nm (ε)
) dε
2π
, (5c)

where
>

denotes the Cauchy principal value. Negative
(positive) parameters Jmn, Imn, and Dmn correspond to
ferromagnetic (antiferromagnetic) interactions.

We notice here, for instance, that the Heisenberg like
interaction is finite regardless of the spin-polarization in
the molecules, while the Ising and DM like interactions
are finite only under spin-polarized conditions. It may
also be noticed that the Ising like interaction contributes
to the uniaxial anisotropy [41] whereas the DM like in-
teraction provides a transverse anisotropy component.
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The expressions for the Heisenberg, Ising, and DM
self and exchange interactions given in Eq. (5) consti-
tute a very general result since they provide the spin-
interactions far from equilibrium, as well as in equilib-
rium, both under electric and thermal fields. The expres-
sions can, moreover, be employed in materials calcula-
tions by interpreting the GFs Gmn in terms of real space
distributions of the electronic structure. In the present
context, we shall go deeper into a discussion of their
properties in coupled magnetic molecules.

Under equilibrium conditions (vanishing voltage
and thermal biases), we can employ the fluctuation-
dissipation theorem through the relation G</>

mn (ω) =
(±i) f (±ω)[−2ImGr

mn(ω)], where f (ω) is the Fermi-Dirac
distribution function at the (electro-) chemical potential
µ. We define g(0)

mn =
∑
σGmnσ/2 and g(1)

mn = ẑ
∑
σσ

z
σσGmnσ/2,

for a simple collinear spin-polarized structure. Inserting
into Eq. (5a) and using the Kramers-Krönig relations we
obtain Jmn = vmvn

∑
σ

∫
f (ε)Gr

mnσ(ε)Gr
nmσ̄(ε)dε/4π, which

is in agreement with previous results [42–44].
Under non-equilibrium conditions we use the general

relation G</>(ω) = Gr(ω)Σ</>(ω)Ga(ω), where the self-
energy Σ</> is given by the couplings Γχσ . Reducing the
set-up to a molecular dimer and neglecting the back-
action from the localized spins, we can write the GF

Gr
σ(ω) =

1
2Ωσ

∑
s=±1

Ωσσ0 + 2sTcσx + s(∆σ− iγσ/2)σz

ω−Eσs
. (6)

Here, Eσ± = (ε1σ+ε2σ±Ωσ− iΓσ/2)/2, Ω2
σ = (∆σ− iγσ/2)2 +

4T 2
c , ∆σ = ε1σ − ε2σ, Γσ =

∑
χΓχσ , and γσ = ΓL

σ − ΓR
σ . The

resonance Eσ+ (Eσ−) signifies the orbital with the high-
est (lowest) energy, and Γχσ = 2π

∑
k∈χT

2
χρ

χ
kσ denotes the

coupling to the lead χ = L,R, in terms of the density
of electron states (DOS) ρχkσ. The spin-polarization in
the leads is parametrized within a Stoner picture using
pχ ∈ [−1,1] and Γχσ = Γχ(1+σz

σσpχ)/2 such that Γχ =
∑
σΓχσ

and Γ =
∑
χΓχ.

For the transparency of mathematical formulation, we
assume equivalent molecules such that εnσ = ε0 and sym-
metric couplings Γχσ = Γσ/2, retaining spin-polarization
in the leads. The Heisenberg exchange Jmn (m , n) then
becomes

Jmn =−
T

2
c

8π
vmvn

∑
σ

Γσ

?
fL(ε) + fR(ε)

|ε−Eσ+|
2|ε−Eσ−|2

× (ε−ε0)
(ε−ε0)2

−T
2
c − (Γσ̄/4)2

|ε−Eσ̄+|
2|ε−Eσ̄−|2

dε. (7)

We notice that the Heisenberg exchange depends on the
electronic occupations (∝ fL + fR) of the leads and scales
linearly with Γ. The expression, moreover, indicates
that there is a finite exchange interaction between the
localized spins whenever the chemical potential µχ lies
within the energy range of the molecular orbitals, that
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FIG. 2: (Color online) Heisenberg exchange J12 as function of
(a) chemical potential µ, (b) bias voltage V, and (c) temperature
difference ∆T = TR −TL. The plots in (a) and (b) are off-set for
clarity, the system is gated (µ = −2 meV) in (b), (c), while the
colors refer to different spin-polarizations (pL,pR) in the leads.
The inset in (a) shows the electronically induced anisotropy
fields J1(2) acting on the individual spins. Here, ε0 = 0, Tc =
3Γ = v1/5 = v2/5 = 1 meV, and TL = 1 K.

is, (µχ−ε0)2
≤ T

2
c + (Γσ/4)2. This result is demonstrated

in Fig. 2(a), which shows the equilibrium exchange as
function of µχ = µ for different spin-polarizations pL and
pR. The exchange, which peaks at the orbital resonances
Eσ±, is anti-ferromagnetic below Eσ− (above Eσ+) and
ferromagnetic between the resonances, which is a typ-
ical behavior for superexchange. This behavior can be
controlled by means of gating or tuning voltage bias,
see Fig. 2(b) where the system is gated (µ−ε0 = −2) and
driven with a finite voltage bias. Experimental values of
antiferromagnetic (Heisenberg) exchange between, e.g.,
MPc have been reported in the range between 0.5 — 20
meV [6, 38], and our results are well within this regime
for realistic parameters of the model.

From Fig. 2(a) and 2(b), it is clear that the equilibrium
and non-equilibrium responses on the spin-polarization
in the leads are quite different. While the exchange
depends only weakly on (pL,pR) in equilibrium, the
ferromagnetic regimes change dramatically under non-
equilibrium conditions. Current flowing from stronger
to weaker spin-polarization generates a stronger ferro-
magnetic exchange while it becomes weaker when the
current flows in the opposite direction.

Varying the temperature and/or introducing a thermal
bias ∆T = TR−TL provides an alternative route to control
the exchange. The thermal broadening of the electronic
density in the leads effectively makes it (partially) reso-
nant with the molecular orbitals. The plots in Fig. 2(c)
shows the dependence on a thermal bias for different
(pL,pR). The initial peak is related to the fact that the
lower orbital, c.f. Fig. 2(a) and 2(b), becomes resonant
with the thermally broadened electrons in the right lead.
With increasing ∆T, more of the molecular electron den-
sity contributes to the process, balancing ferromagnetic
and antiferromagnetic exchanges, which results in a de-
creased total exchange interaction. The plots in Fig. 2(c)
shows that we can control this balance into a regime of
ferromagnetic exchange for a finite range of temperature
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FIG. 3: (Color online) Ising exchange I12. The system is gated
(µ = −2 meV) in (b), (c) while other parameters are as in Fig. 2.

biases by tuning the degree of spin-polarization in the
leads.

Although previous studies have uncovered that the
sign of Heisenberg exchange interaction among mag-
netic impurities can be tuned electrically (see, e.g.,
[45, 46]), to our knowledge this thermal control of the
Heisenberg exchange has never been explored before.
More importantly, our general results Eqs. (4)-(5) pro-
vide a unified microscopic theory for both the electrical
and thermal control of magnetic interactions including
also anisotropic interactions, as we discuss below.

Under the same conditions as above, we write the Ising
exchange Imn = Imnẑẑ (m , n) where

Imn =−
T

2
c

4π
vmvn

∑
σσ′
σz
σσσ

z
σ′σ′Γσ

?
fL(ε) + fR(ε)

|ε−Eσ+|
2|ε−Eσ−|2

× (ε−ε0)
(ε−ε0)2

−T
2
c − (Γσ′/4)2

|ε−Eσ′+|2|ε−Eσ′−|2
dε. (8)

The basic difference compared to the Heisenberg ex-
change is that the Ising exchange requires a non-
vanishing spin-polarization in the system to be finite.
Effectively, the Ising energy becomes a measure of the
spin-polarization in the system, which is indicated by
the presence of the z-component of the Pauli matrices in
Eq. (8). Therefore, the Ising energy is small everywhere
except when the molecular orbitals are resonant with the
chemical potential(s) of the lead(s), see Fig. 3. In a simi-
lar way as with the Heisenberg energy, we can tune the
sign of the Ising exchange by means of gating, voltage
bias, thermal bias, and spin-polarization.

Finally the DM exchange energy Dmn = Dmnẑ (m , n)
within the same approximation but with independent pL
and pR, is obtained as

Dmn =−
1
π

vmvnT
2
c (ΓL
↑
ΓR
↓
−ΓL
↓
ΓR
↑

)
? (

fL(ε)− fR(ε)
)

×
(ε−ε0)2

|ε−E↑+|2|ε−E↑−|2|ε−E↓+|2|ε−E↓−|2
dε. (9)

The integrand peaks at the resonances Eσs while the sign
of Dmn is governed by the polarities of the voltage bias
and temperature difference, and the spin-polarization in
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FIG. 4: (Color online) DM exchange D12. The system is biased
(V = 0.1 mV) in (a) and gated (µ = −2 meV) in (b), (c), while
other parameters are as in Fig. 2.

the leads. It shows that the DM energy results from
the breaking of time-reversal symmetry (spin-polarized
current between the localized spins) and space inver-
sion symmetry (biased by a source-drain voltage and/or
temperature difference), see Fig. 4. The scaling with Γ2

suggests that the influence of Dmn on the spin excitation
spectrum becomes important for stronger coupling Γ.
The combination ΓL

↑
ΓR
↓
−ΓL
↓
ΓR
↑

, which corresponds to an
effective spin-orbit coupling between the leads, suggests
that Dmn is maximal for antiferromagnetic alignment.

For small voltage bias and zero temperature differ-
ence, we have fL(ε)− fR(ε) ≈ eV(β/4)cosh−2[β(ε −µ)/2],
which indicates a linear voltage bias dependence of Dmn
near equilibrium, as is shown in Fig. 4(b). In case of
small temperature difference ∆T = TR −TL and vanish-
ing voltage bias, we have fL(ε)− fR(ε)≈−(∆T/T)(β/4)(ε−
µ)cosh−2[β(ε−µ)/2], indicating a linear dependence on
the temperature difference, see Fig. 4(c).

The conclusions from the present study of the elec-
trically and thermally mediated exchange interactions
between localized magnetic moments have an impact
on the magnetic properties of magnetically active quan-
tum devices designed with atomic or molecular build-
ing blocks. Depending not only on the couplings to the
leads and the spin-polarization in the system but also
on gating, voltage bias, and effective temperature dif-
ference between the leads, the expected magnetic prop-
erties may be drastically different. We expect that our
findings should be verifiable by existing state-of-the-art
experiments. We believe that the presented results pro-
vide essential new understanding to magnetic interac-
tions and the ability for control by means of external
electric and thermal sources.
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Blügel, P. H. Dederichs, and R. Wiesendanger, Nat. Phys.
6, 187 (2010).

[6] X. Chen, Y.-S. Fu, S.-H. Ji, T. Zhang, P. Cheng, X.-C. Ma,
X.-L. Zou, W.-H. Duan, J.-F. Jia, and Q.-K. Xue, Phys. Rev.
Lett. 101, 197208 (2008).

[7] A. F. Otte, M. Ternes, S. Loth, C. P. Lutz, C. F. Hirjibehedin,
and A. J. Heinrich, Phys. Rev. Lett. 103, 107203 (2009).

[8] H. Prüser, M. Wenderoth, P. E. Dargel, A. Weismann, R.
Peters, T. Pruschke, and R. G. Ulbrich, Nat. Phys. 7, 203
(2011).

[9] A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesen-
danger, Science 332, 1062 (2011).

[10] S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J.
Heinrich, Science 335, 196 (2012).

[11] A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk,
S. Krause, T. O. Wehling, S, Lounis, A. Lichtenstein, D.
Pfannkuche, J. Wiebe, and R. Wiesendanger, Science 339,
55 (2013).

[12] H. Wende, M. Bernien, J. Luo, C. Sorg, N. Ponpandian,
J. Kurde, J. Miguel, M. Piantek, X. Xu, PH. Eckhold, W.
Kuch, K. Baberschke, P. M. Panchmatia, B. Sanyal, P. M.
Oppeneer, and O. Eriksson, Nat. Mat. 6, 516 (2007).

[13] W. Kuch, K. Baberschke, P. M. Panchmatia, B. Sanyal, P.
M. Oppeneer, and O. Eriksson, Nat. Mat. 6, 516 (2007).

[14] I. Fernández-Torrente, K. J. Franke, and J. I. Pascual, Phys.
Rev. Lett. 101, 217203 (2008).

[15] A. Chiesa, S. Carretta, P. Santini, G. Amoretti, and E.
Pavarini, Phys. Rev. Lett. 110, 157204 (2013).

[16] K. V. Raman, A. M. Kamerbeek, A. Mukherjee, N. Atodire-
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