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We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei,
the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations,
performed at quark masses corresponding to mπ ∼ 800 MeV, reveal that the structure of these
nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In
particular, we find that the magnetic moment of 3He differs only slightly from that of a free neutron,
as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and
a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for
the triton, µ3H ∼ µp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar
moment within the uncertainties of the calculations. Furthermore, deviations from the Schmidt
limits are also found to be similar to those in nature for these nuclei. These findings suggest that at
least some nuclei at these unphysical quark masses are describable by a phenomenological nuclear
shell-model.

The electromagnetic interactions of nuclei have been used
extensively to elucidate their structure and dynamics. In
the early days of nuclear physics, the magnetic moments
of the light nuclei helped to reveal that they behaved
like a collection of “weakly” interacting nucleons that,
to a very large degree, retained their identity, despite
being bound together by the strong nuclear force. This
feature, in part, led to the establishment of the nuclear
shell model as a phenomenological tool with which to
predict basic properties of nuclei throughout the peri-
odic table. The success of the shell model is somewhat
remarkable, given that nuclei are fundamentally bound
states of quarks and gluons, the degrees of freedom of
quantum chromodynamics (QCD). The strong nuclear
force emerges from QCD as a by-product of confinement
and chiral symmetry breaking. The fact that, at the
physical values of the quark masses, nuclei are not simply
collections of quarks and gluons, defined by their global
quantum numbers, but have the structure of interact-
ing protons and neutrons, remains to be understood at
a deep level. In this letter, we continue our exploration
of nuclei at unphysical quark masses, and calculate the
magnetic moments of the lightest few nuclei using lattice
QCD. We find that they are close to those found in na-

ture, and also close to the sum of the constituent nucleon
magnetic moments in the simplest shell model configura-
tion. This second finding in particular is remarkable and
suggests that a phenomenological nuclear shell-model is
applicable for at least some nuclei at these unphysical
quark masses.

Our lattice QCD calculations were performed on one
ensemble of gauge-field configurations generated with a
Nf = 3 clover-improved fermion action [1] and a Lüscher-
Weisz gauge action [2]. The configurations have L = 32
lattice sites in each spatial direction, T = 48 sites in the
temporal direction, and a lattice spacing of a ∼ 0.12 fm.
All three light-quark masses were set equal to that of
the physical strange quark, producing a pion of mass
mπ ∼ 806 MeV. A background electromagnetic (UQ(1))
gauge field giving rise to a uniform magnetic field along
the z-axis was multiplied onto each QCD gauge field in
the ensemble (separately for each quark flavor), and these
combined gauge fields were used to calculate up- and
down-quark propagators, which were then contracted to
form the requisite nuclear correlation functions using the
techniques of Ref. [3]. Calculations were performed on
∼ 750 gauge-field configurations, taken at uniform inter-
vals from ∼ 10, 000 trajectories. On each configuration,
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quark propagators were generated from 48 uniformly dis-
tributed Gaussian-smeared sources for each of four mag-
netic field strengths (for further details of the production,
see Refs. [4, 5]).

Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6–14] and electromagnetic polarizabilities
of mesons and baryons [9, 12–17]. In order that the quark
fields, with electric charges Qu = + 2

3 and Qd,s = − 1
3 for

the up-, down- and strange-quarks, respectively, satisfy
spatially-periodic boundary conditions in the presence of
a background magnetic field, it is well-known [18] that
the lattice links, Uµ(x), associated with the UQ(1) gauge
field are of the form

Uµ(x) = ei
6πQqñ

L2 x1δµ,2 × e−i
6πQqñ

L x2δµ,1δx1,L−1 , (1)

for quark of flavour q, where ñ must be an integer. The
uniform magnetic field, B, resulting from these links is

eB =
6πñ

L2
ẑ , (2)

where e is the magnitude of the electric charge and ẑ is
a unit vector in the x3-direction. In physical units, the
background magnetic fields exploited with this ensemble
of gauge-field configurations are e|B| ∼ 0.046 |ñ| GeV2.
To optimize the re-use of light-quark propagators in the
production, calculations were performed for UQ(1) fields
with ñ = 0, 1,−2,+4. Four field strengths were found
to be sufficient for this initial investigation. With three
degenerate flavors of light quarks, and a traceless electric-
charge matrix, there are no contributions from coupling
of the B field to sea quarks at leading order in the elec-
tric charge. Therefore, the magnetic moments presented
here are complete calculations (there are no missing dis-
connected contributions).

The ground-state energy of a non-relativistic hadron
of mass M , and charge Qe in a uniform magnetic field is

E(B) = M +
|QeB|

2M
− µ ·B

− 2πβM0 |B|2 − 2πβM2TijBiBj + ... , (3)

where the ellipses denote terms that are cubic and higher
in the magnetic field, as well as terms that are 1/M
suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
terms are from its scalar and quadrupole magnetic polar-
izabilities, βM0,M2, respectively (Tij is a traceless sym-
metric tensor [21]). The magnetic moment term is only
present for particles with spin, and βM2 is only present
for j ≥ 1. In order to determine µ using lattice QCD
calculations, two-point correlation functions associated
with the hadron or nucleus of interest in the jz = ±j
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FIG. 1: The correlator ratios R(B) as a function of time
slice for the various states (p, n, d, 3He, and 3H) for ñ =
+1,−2,+4. Fits to the ratios are also shown.

magnetic sub-states, C
(B)
jz

(t), can be calculated in the
presence of background fields of the form given in Eq. (1)
with strength B = ẑ · B. The energies of ground-states
aligned and anti-aligned with the magnetic field, EB±j ,
will be split by spin-dependent interactions, and the dif-
ference, δE(B) = EB+j − EB−j , can be extracted from the
correlation functions that we consider. The component
of δE(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy difference is determined from the
large time behaviour of

R(B) =
C

(B)
j (t) C

(0)
−j (t)

C
(B)
−j (t) C

(0)
j (t)

t→∞−→ Ze−δE
(B)t . (4)

Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-
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FIG. 2: The calculated δE(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits

of the form δE(B) = −2µ |B|+γ |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
χ2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,−2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form δE(B) = −2µ |B|+ γ |B|3, where γ is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µp = 1.792(19)(37) NM (nu-
clear magnetons) and µn = −1.138(03)(10) NM, respec-
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of mπ ∼ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N ,
where M latt

N is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µp = 3.119(33)(64) nNM and µn =
−1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p =
2.792847356(23) NM and µexpt

n = −1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, gA.

In Figure 2, we also show δE(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
nNM for the deuteron, µ3He = −2.29(03)(12) nNM for
3He and µ3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d =

0.8574382308(72) NM, µexpt
3He = −2.127625306(25) NM

and µexpt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He = µn (where
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FIG. 4: The differences between the nuclear magnetic mo-
ments and the predictions of the naive shell-model. The re-
sults of the lattice QCD calculation at a pion mass of mπ ∼
806 MeV, in units of natural nuclear magnetons (e/2M latt

N ),
are shown as the solid bands. The inner band corresponds
to the statistical uncertainties, while the outer bands corre-
spond to the statistical and systematic uncertainties combined
in quadrature, including estimates of the uncertainties from
lattice spacing and volume. The red dashed lines show the
experimentally measured differences.

the two protons in the 1s-state are spin paired to jp = 0
and the neutron is in the 1s-state) and µSM

3H = µp (where
the two neutrons in the 1s-state are spin paired to jn = 0
and the proton is in the 1s-state). For these simple s-
shell nuclei, the proton and neutron magnetic moments
correspond to the Schmidt limits [22]. In nature, 3He is
one of the very few nuclei that lie outside the Schmidt
limits [23]. In our calculations we also find that 3He
lies outside the Schmidt limits at this heavier pion mass,
with δµ3He = µ3He − µn = −0.340(24)(93) nNM (com-
pared to the experimental difference of δµexpt

3He = −0.215
NM) , and similarly for the triton δµ3H = µ3H − µp =
+0.45(04)(16) nNM (compared to the experimental dif-
ference of δµexpt

3H = +0.186 NM), corresponding to ∼ 10%
deviations from the naive shell-model predictions. These
quantities are summarized in Figure 4.

At a phenomenological level, it is not difficult to under-
stand why the magnetic moments scale, to a large degree,
with the nucleon mass. The success of the non-relativistic
quark model (NRQM) in describing the magnetic mo-
ments of the lowest-lying baryons as the sum of contri-
butions from three weakly-bound non-relativistic quarks,
with up- and down-quark masses of MU,D ∼ 300 MeV
and strange-quark mass of MS ∼ 500 MeV, suggests
that naive scaling with the hadron mass should cap-
ture most of the quark-mass dependence. From the per-
spective of chiral perturbation theory (χPT), the lead-
ing contributions to the nucleon magnetic moments are
from dimension-five operators, with the leading quark-
mass dependence arising from mesons loops that are sup-
pressed in the chiral expansion, and scaling linearly with
the mass of the pion. Consistency of the magnetic mo-

ments calculated in the NRQM and in χPT suggests
that the nucleon mass scales linearly with the pion mass,
which is inconsistent with chiral power counting, but con-
sistent with the results obtained from analysis of lattice
QCD calculations [24]. It should be emphasized that the
magnetic moments of the light nuclei that we study here
are well understood in the context of nuclear chiral ef-
fective field theory, where pions and nucleons are the ef-
fective degrees of freedom, and heavier meson-exchange-
type contributions are included as various contact inter-
actions among nucleons (see, for instance, Ref. [25]).

The present calculations have been performed at a sin-
gle lattice spacing and in one lattice volume, and the lack
of continuum and infinite volume extrapolations intro-
duces systematic uncertainties into our results. Chiral
perturbation theory can be used to estimate the finite
volume (FV) effects in the magnetic moments, using the
sum of the known [26] effects on the constituent nucle-
ons. These contributions are <∼ 1% in all cases. There
may be additional effects beyond the single particle con-
tributions, however the binding energies of light nuclei
calculated previously in multiple volumes at this quark
mass [4] demonstrate that the current lattice volume is
large enough for such FV effects to be negligible. In
contrast, calculations with multiple lattice spacings have
not been performed at this heavier pion mass, and conse-
quently this systematic uncertainty remains to be quan-
tified. However, electromagnetic contributions to the ac-
tion are perturbatively improved as they are included as a
background field in the link variables. Consequently, the
lattice spacing artifacts are expected to be small, entering
at O(Λ2

QCDa
2) ∼ 3% for ΛQCD = 300 MeV. To account

for these effects, we combine the two sources of uncer-
tainty in quadrature and assess an overall multiplicative
systematic uncertainty of 3% on all the extracted mo-
ments. For the nuclei, this is small compared to the other
systematic uncertainties, but for the neutron in particu-
lar, it is the dominant uncertainty.

In conclusion, we have presented the results of lattice
QCD calculations of the magnetic moments of the light-
est nuclei at the flavor SU(3) symmetric point. We find
that, when rescaled by the mass of the nucleon, the mag-
netic moments of the proton, neutron, deuteron, 3He and
triton are remarkably close to their experimental values.
The magnetic moment of 3He is very close to that of a
free neutron, consistent with the two protons in the 1s-
state spin-paired to jp = 0 and the valence neutron in the
1s-state. Analogous results are found for the triton, and
the magnetic moment of the deuteron is consistent with
the sum of the neutron and proton magnetic moments.
This work demonstrates for the first time that QCD can
be used to calculate the structure of nuclei from first
principles. Calculations using these techniques at lighter
quark masses and for larger nuclei are ongoing and will
be reported in future work. Perhaps even more impor-
tantly, these results reveal aspects of the nature of nuclei,
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not at the physical quark masses, but in a more general
setting where Standard Model parameters are allowed to
vary. In particular, they indicate that the phenomeno-
logical successes of the nuclear shell-model in nature may
extend over a broad range of quark masses.

We thank D.B. Kaplan and D.R. Phillips for helpful dis-
cussions. SRB was supported in part by NSF continuing
grant PHY1206498, MJS was supported in part by DOE
grant No. DE-FG02-00ER41132, WD was supported by
the U.S. Department of Energy Early Career Research
Award DE-SC0010495 and the Solomon Buchsbaum
Fund at MIT. KO was supported by the U.S. Department
of Energy through Grant Number DE- FG02-04ER41302
and through Grant Number DE-AC05-06OR23177 un-
der which JSA operates the Thomas Jefferson National
Accelerator Facility. HWL was supported by DOE grant
No. DE-FG02-97ER4014. The work of AP was supported
by the contract FIS2011-24154 from MEC (Spain) and
FEDER. BCT was supported in part by a joint City Col-
lege of New York–RIKEN/Brookhaven Research Center
fellowship, a grant from the Professional Staff Congress
of the CUNY, and by the U.S. National Science Founda-
tion, under Grant No. PHY12-05778. This work made
use of high-performance computing resources provided
by XSEDE (supported by National Science Foundation
Grant Number OCI-1053575), NERSC (supported by
U.S. Department of Energy Grant Number DE-AC02-
05CH11231), the PRACE Research Infrastructure re-
source Mare Nostrum at the Barcelona SuperComputing
Center, and by the USQCD collaboration. Parts of these
calculations were performed using the chroma lattice field
theory library [27].

[1] B. Sheikholeslami and R. Wohlert, Nucl.Phys. B259, 572
(1985).
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